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Abstract

We analyze a tractable rational expectations equilibrium model with margin constraints. We

argue that constraints affect and are affected by informational efficiency, leading to a novel am-

plification mechanism. A decline in wealth tightens constraints and reduces investors’ incentive

to acquire information, lowering price informativeness. Lower informativeness, in turn, increases

the risk borne by financiers who fund trades, leading them to further tighten constraints faced

by investors. This information spiral leads to (i) significant increases in risk premium and return

volatility in crises, when investors’ wealth declines, (ii) complementarities in information acquisition

in crises, and (iii) complementarities in margin requirements.
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1 Introduction

One of the basic tenets of financial economics is that market prices aggregate investors’ information.

The core of the argument is that investors acquire information about future asset values and trade

on it, thereby impounding that information into price. This argument presupposes that investors

have incentives to acquire information and the capacity to trade on it, where each of these factors

is crucially affected by investors’ ability to fund their trades. Thus, an important question arises:

how do funding constraints faced by investors affect price informativeness? Conversely, since lower

informativeness might have an effect on the financier’s risk of funding a trade, another important

question is: how does price informativeness affect the tightness of funding constraints? Answering

these questions requires a model in which price informativeness and funding constraints are jointly

determined in equilibrium. Our paper develops such a model and examines its implications for asset

pricing.

The main challenge in studying the interplay between funding constraints and informational

efficiency is that most noisy rational expectation equilibrium (REE) models, which are instrumental in

analyzing informational efficiency, cannot accommodate constraints in a tractable manner.1 Our first

contribution is, developing a tractable REE model with general portfolio constraints that can depend

on prices.

We then apply our methodology to study a model in which portfolio constraints arise because of

margin requirements set by financiers. This analysis underpins the second contribution of the paper,

showing that investors’ funding both affects and is affected by informational efficiency, which leads

to a novel amplification mechanism that we call the information spiral. In our mechanism, a decline

in wealth tightens constraints and reduces investors’ incentive to acquire information, lowering price

informativeness. Lower informativeness, in turn, increases the risk borne by financiers who fund trades,

leading them to further tighten constraints faced by investors. As a result, risk premium, volatility,

and the Sharpe ratio rise significantly when investors’ wealth falls.

We consider a canonical CARA-Normal REE model in which some investors, whom we call

“specialists”, to highlight their ability to produce information, first acquire private signals about a

1Two noteworthy exceptions are Yuan (2005) and Nezafat, Schroder, and Wang (2017); these authors analyze bor-
rowing constraints and short-sale constraints, respectively.
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risky asset’s fundamental value, and then, trade the asset with other investors (“nonspecialists”)

for profit and also for hedging their endowment shocks. The novelty is that we allow for general

portfolio constraints: specialists can trade up only to some maximal long and short positions of

the risky asset, and these portfolio constraints can depend on price. This general price-dependent

specification of portfolio constraints subsumes many types of real-world trading constraints (e.g.,

short-sale constraints, borrowing constraints, margin requirements). Without constraints, the model

is standard: (i) the equilibrium price is linear in the fundamental value and aggregate endowment

shock, and (ii) investors’ initial wealth is irrelevant for asset prices.

Under portfolio constraints, the financial market equilibrium is as follows. (i) Although the price

function may not be linear, it is informationally equivalent to a linear combination of the fundamental

value and the aggregate endowment shock; hence, inference remains tractable. (ii) Specialists’ initial

wealth matters for asset prices provided that it affects constraints. With the methodology of solving

equilibrium with constraints at hand, we turn to study the paper’s primary concern: the reinforcing

interaction between constraints and informational efficiency.

We begin with an analysis of how constraints affect informational efficiency. Without further

specifying the source or form of constraints, we show that they hinder such efficiency. It is intuitive

that, when constraints become tighter, specialists must take smaller positions and thus profit less on

their private information. Anticipating the reduced scope for profit, they acquire less information

ex ante. As specialists acquire less information, the price becomes less informative about asset funda-

mentals in equilibrium. And to the extent that specialists’ wealth relaxes their constraints, a wealth

effect emerges in our model despite investors’ absolute risk aversion being constant: lower wealth

impedes information acquisition, and hence, reduces informational efficiency.

Next we study the reverse channel of informational efficiency affecting constraints. Motivated

by real-world margin requirements, we follow Brunnermeier and Pedersen (2009) in assuming that

specialists finance their positions through collateralized borrowing from financiers who require margins

that control their value-at-risk (VaR).2 We show that lower informational efficiency leads to tighter

margins. Here, it is intuitive that, when prices are less informative, the price tracks fundamentals less

2Our main results are robust to alternative risk-based margins, such as tail value-at-risk (TVaR) and expected shortfall
(ES).
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closely, which implies a greater risk of the trade they finance, leading them to set higher margins.

When we combine these analyses, we obtain an information-based amplification mechanism,

illustrated in Figure 1, which we call the information spiral. Tighter funding constraints reduce

the information acquired by specialists, which reduces informational efficiency; reduced informational

efficiency, in turn, leads to higher margins, which tightens specialists’ constraints.3

Figure 1: Amplification mechanism
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This information spiral has two key implications. First, it gives rise to new sources of strategic

complementarities in financial markets. The first source comes from specialists’ decisions to acquire

information: a reduction in information acquired by other specialists makes prices less informative,

which increases the margin requirements faced by the specialist and induces him to acquire less in-

formation. The second complementarity is found in financiers’ margin requirements: an increase in

margins required by other financiers discourages their specialists from acquiring information. As a

result, prices become less informative and the financier of interest responds by setting higher margins.

The second key implication of the information spiral is that a negative shock to specialists’

wealth is amplified and causes larger changes in asset prices than in a model with fixed signal quality

and/or fixed margin requirements. A drop in specialists’ wealth tightens their constraints and leads

to a drop in price informativeness. The effect of the wealth drop is reinforced via the information

3Our baseline model highlights the information acquisition channel of interaction between price informativeness and
investors’ constraints. An alternative setting in Appendix B highlights a complementary information aggregation channel.
The interaction between investors’ constraints and information efficiency is similar in both settings. In the alternative
setting the noise in prices comes from exogenous noise traders who are not affected by constraints. Tightening the funding
constraints of informed specialists reduces their aggregate trading intensity but not that of the noise traders. This hurts
price informativeness, even for a given quality of private information. The reduction in price informativeness leads to an
increase in margins, for reasons as in the baseline model.
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spiral. As a result, when specialists’ wealth is low, which we interpret as a crisis period, uncertainty is

heightened, causing risk premium, return volatility and the Sharpe ratio to rise. These results match

empirical observations made during crisis periods such as the 2007–2009 global financial crisis.

Our mechanism provides a new crisis narrative and highlights an important role of specialist

investors such as hedge funds—namely in enhancing price informativeness. Consistent with empirical

evidence for equities (Barrot, Kaniel, and Sraer (2016)), in our model, as a crisis deepens, special-

ists face tighter portfolio constraints and become less capable of holding risky assets; meanwhile,

nonspecialists like commercial banks and retail investors step up to provide liquidity. Nonetheless,

risk premia, volatility, and the Sharpe ratio are elevated. We claim that this is because specialists

are instrumental in making price informative (see Koijen, Richmond, and Yogo (2019)), and tightened

constraints hinder them from doing so. Consistent with this claim, we empirically document a negative

correlation between measures of price informativeness and constraints on specialists. In short, com-

plementary to existing intermediary-based crisis narratives in which nonspecialists are restricted from

participating in the asset market, our mechanism shows how intermediaries matter even in markets

where all investors can freely participate.4

This paper makes several methodological contributions. We present and solve a REE model

with general portfolio constraints and compute the marginal value of information for a specialist

facing these constraints in closed-form using stochastic calculus techniques.5 In our main application

we consider constraints arising from margin requirements, but one can also utilize our methodology

to study other types of constraints.6

Related Literature

This paper lies at the intersection of various strands of literature. It shares the emphasis of seminal

studies that address the role played by financial markets in aggregating and disseminating information,

4Restricted participation is a central assumption in intermediary asset-pricing models, in which intermediaries are
typically the only agents who can hold risky assets. During crisis periods, risk premia of these assets rise sharply, or
prices drop substantially because otherwise the constrained intermediaries would not be able to hold the entire supply
of these assets. See He and Krishnamurthy (2018) for a survey on this literature.

5By using stochastic calculus, we compute the marginal value of information for a specialist facing general portfolio
constraints directly, without first calculating the value of information and then differentiating it with respect to specialist’s
choice of signal precision.

6In Appendix D, we study the case in which specialists have some risky assets as initial wealth, which gives rise to a
form of borrowing constraints as in Yuan (2005).
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which include Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), and Diamond and

Verrecchia (1981). In these models, it is generally assumed that investors can borrow or lend freely

at the riskless rate—in other words, there are no funding constraints. We contribute to this literature

by developing an REE model that incorporates general portfolio constraints. Some particular types of

portfolio constraints have been examined before: Yuan (2005), Venter (2015), and Yuan (2006) study

REE models with borrowing constraints, short-sale constraints, and both constraints, respectively.

Albagli, Hellwig, and Tsyvinski (2011) derive various asset-pricing implications in a model with risk-

neutral investors, exogenous portfolio constraints and exogenous information. Our work differs from

these papers in that we study investors’ information acquisition problem and focus on the interplay

between the tightness of constraints and the equilibrium informational efficiency.

Closely related to our work is Nezafat et al. (2017), who focus on how short-sale constraints

affect information production and asset prices. Our paper differs in two important dimensions. First,

our methodology extends their work to explore price-dependent constraints of a more general nature,

allowing us to consider constraints resulting from risk-based margin requirements. Second, and more

importantly, in our paper informational efficiency affects constraints, which is not present in their

paper.

Our work is related to the literature on information acquisition in REE models. Grossman

and Stiglitz (1980), Verrecchia (1982), Peng and Xiong (2006), and Van Nieuwerburgh and Veldkamp

(2009) study investor’s information acquisition problem in the case of no funding constraints. Peress

(2004) and Breugem and Buss (2019) use approximation and numerical methods, respectively, to

investigate the effect of investors’ wealth on information acquisition in a setting with investors who

exhibit constant relative risk aversion (CRRA). Our tractable model also features wealth effects,

despite the investors having constant absolute risk aversion, because investors’ wealth relaxes their

funding constraints. Moreover, we can derive all our results analytically in the “crisis” limit when

investors’ wealth is small without relying on approximations. Since our paper speaks to the evidence

in crises, when changes in equilibrium quantities are highly nonlinear, not relying on approximations

is important.

In addition, we contribute to the literature on strategic complementarities in information ac-

quisition, for example, Veldkamp (2006) , Hellwig and Veldkamp (2009), Garcia and Strobl (2011),
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Ganguli and Yang (2009),Goldstein and Yang (2015), Avdis (2016),Huang (2015), and Dow, Goldstein,

and Guembel (2017). In particular, the focus of complementarity between two groups of agents via

information acquisition and trading is shared in Goldstein and Yang (2015). In Goldstein and Yang

(2015), when one group of investors learns less about (and trades less aggressively on) one component

of fundamentals, the price becomes less informative about this component. This increases uncertainty

for the other group, which in turn, learns less about (and trades less aggressively on) another com-

ponent. As a result, acquiring information about the two components of fundamentals is a strategic

complement. We view our analysis as complementary to theirs: at the aggregate level, our paper

shares the feature that more learning by one group of agents (specialists in our model) reduces the

uncertainty faced by the other group (financiers in our model), whose response (more financing) in

turn reinforces learning by the first group. However, there are important differences in the underlying

mechanism. In our model, financiers do not produce information. The complementarity comes from

financiers’ funding decisions to investors. Moreover, complementarity in our paper arises even without

multiple (learnable) components of fundamentals.

Except for Dow et al. (2017), the main distinguishing feature of our model is that comple-

mentarities arise in bad times, and therefore, our results have business-cycle predictions. While the

mechanism in Dow et al. (2017) also generates complementarities during bad times, our paper differs

from theirs in two dimensions. First, the predictions are different because bad times mean that in-

vestors, or the financial sector in general, have low wealth in our paper, while in theirs bad times mean

low productivity in the real sector. Second, the amplification mechanism acts through firm managers’

learning to make real investment decisions in Dow et al. (2017), whereas in ours, it is via financiers’

funding decisions.

Our paper is also related to the literature on secondary financial markets as a source of infor-

mation for decision makers; see Bond, Edmans, and Goldstein (2012) for a survey. We contribute to

this literature by studying how financiers can use the information in prices to set their margins, and

we find that lower informational efficiency leads to tighter margins.

Our work contributes to the intermediary asset-pricing literature on the effect of specialists’

wealth and the associated amplification mechanisms. For example, Xiong (2001) and Kyle and Xiong

(2001) study wealth constraints as amplification and spillover mechanisms, respectively. Gromb and
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Vayanos (2002, 2017) develop an equilibrium model of arbitrage trading with margin constraints to

explain contagion. Brunnermeier and Pedersen (2009) examine how funding liquidity and market

liquidity reinforce each other. He and Krishnamurthy (2011, 2013) and Brunnermeier and Sannikov

(2014) study how declines in an intermediary’s capital reduce her risk-bearing capacity and lead to

higher risk premia and conditional volatility; see also He and Krishnamurthy (2018) for a survey

of the topic. None of these papers studies the interaction of investors’ wealth (or constraints) and

informational efficiency, which is the crux of our paper. Furthermore, unlike most of the models in this

literature, our amplification mechanism does not stem from restricted participation of nonspecialists

and hence can apply to commonly traded assets such as equities.

Finally, Dow and Han (2018) also study how constraints on information-producing specialists

affect equilibrium prices. They show that as specialists become more constrained, firms with high-

quality assets are unwilling to sell their assets in the market because prices do not reveal their true

quality. The quality of traded assets thus deteriorates, leading to market freezes and a large decline

in asset prices. While they focus on the endogenous supply of risky assets of heterogeneous quality in

the primary market, we show a different amplification mechanism in the secondary market when the

supply and quality of traded assets are fixed.

2 An REE model with general portfolio constraints

In this section we develop a model with general portfolio constraints. In Section 3, we will apply our

model to study constraints that arise from margin requirements.

2.1 Setup

There are three dates (i.e., t ∈ {0, 1, 2}) and two assets. The risk-free asset has exogenous (net) return

normalized to zero. The payoff (fundamental value) of the risky asset is f = v + θ (which is paid

at date 2), where v is the learnable (i.e., information about which can be acquired) component of

fundamentals, v ∼ N(0, τ−1
v ), and θ is the unlearnable component of fundamentals, θ ∼ N

(
0, τ−1

θ

)
,

and is independent of v. The aggregate supply of the asset is assumed to be constant 1 unit. The

economy is populated by a unit continuum of specialists, indexed by i ∈ [0, 1], with identical CARA
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preferences over terminal wealth with absolute risk aversion γ. There is also a unit continuum of

nonspecialists with CARA preferences with absolute risk aversion γm.7 The fundamental distinction

between the specialists and the nonspecialists is that only the specialists have the ability to acquire

information about the risky asset, which happens at t = 0. Trading occurs at t = 1, and all agents

consume at t = 2.

Specialists trade the risky asset for hedging and profit reasons. Specifically, at date 2, each

specialist receives a random, non-tradable, and non-pledgeable endowment bi, which has a payoff

that is correlated with the unlearnable component of the risky asset’s payoff, θ. We assume that the

endowment is given by bi = eiθ.
8 The coefficient ei measures the sensitivity of the endowment shock

to the payoff of the risky asset and is known to the specialist at t = 1. Hereafter, we will refer to

ei as the endowment shock of specialist i. The specialist i’s endowment shock ei has systematic and

idiosyncratic components: ei = z+ui. Both components are normally distributed and independent of

v and θ, with z ∼ N
(
0, τ−1

z

)
and ui ∼ N(0, τ−1

u ). Moreover, idiosyncratic shocks ui are independent

across specialists and independent of z. This formulation implies that there is uncertainty about the

aggregate endowment shock z, which will create noise in the price.

At date 1, each specialist i receives a signal si = v + εi, where the εi are independent across

specialists with εi ∼ N(0, τ−1
εi ). The precision of his private signal τεi is optimally chosen by specialist

i at date 0, subject to an increasing, strictly convex, twice continuously differentiable cost function

C(τεi − τε). We assume that this cost function is identical for all specialists and that C(x) = 0 for

x = 0. That is, there is no cost of acquiring information with quality below τε > 0.9 When forming

their expectations about the fundamental, specialists use all the information available to them. The

information set of specialist i at time 1 is Fi = {p, si, ei}, where p is the equilibrium price at time 1.

Nonspecialists face no endowment shocks and receive no signals about the asset payoff. Hence, the

nonspecialists’ information set at time 1 is Fm = {p}.
7This specification of nonspecialist nests two commonly used model setups. When γm = 0, our nonspecialist is risk-

neutral, as in Vives (1995). When γm =∞, the nonspecialist does not trade, hence, our model is equivalent to a model
without a nonspecialist.

8The literature has also considered specification when endowment shocks are correlated with a learnable component
of asset payoff (e.g., Ganguli and Yang (2009) and Manzano and Vives (2011)). The particular choice is not crucial for
our results. In an earlier version of the paper, we showed that our results hold in the alternative specification as well.

9This is equivalent to assuming that specialists are endowed with information with quality τε and only the incremental
information is subject to a cost C(·). This assumption is technical and τε can be arbitrary small: we need it to make
sure that τε is bounded away from zero in equilibrium, even when specialists are fully constrained.
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Constraints. The specialists in our model—but not the nonspecialists—are subject to general port-

folio constraints.10 Given the price p, the minimum and maximum positions that a specialist can take

are a(p) and b(p), respectively, with a(p) < 0 < b(p). The functions a(p) and b(p) may depend on

specialists’ initial wealth W0 and other aggregate equilibrium variables, such as volatility of returns.

In short: at date 1, specialists solve the problem

max
xi(p,si,ei)

E[− exp(−γWi) | p, si, ei], (1)

subject to a(p) ≤ xi(p, si, ei) ≤ b(p), where Wi = W0 + xi(v + θ − p) + eiθ.

The last equation above states that the terminal wealth of specialist i is the sum of his initial wealth,

the profit or loss from trading the risky asset, and his endowment. Similarly, the nonspecialists at

date 1 solve

max
xm(p)

E[− exp(−γmWm) | p], (2)

where Wm = W0,m + xm(v + θ − p).

Finally, the equilibrium price is set to clear the market as follows:

∫
xi(p, si, ei)di+ xm(p) = 1. (3)

We make the following two assumptions regarding the model parameters.

Assumption 1. τ2
uτ

2
θ < 3γ2 (τu + τz) τv.

This assumption is needed to ensure the uniqueness of financial market equilibrium.11

Assumption 2. τθ min(τu, τz) > 2γ2.

This assumption is needed to guarantee that ex-ante utility is well defined. We discuss this in

10We assume the nonspecialists are unconstrained because our focus is on the interplay between specialists’ constraints
and informational efficiency. Nevertheless, our model remains tractable if the nonspecialists are also subject to constraints.

11If the condition does not hold, there might be up to three equilibria in the financial market. The multiplicity can arise
because traders use information about their endowments to make inferences about the noise in the price (see Ganguli
and Yang (2009) and Manzano and Vives (2011)). Since this source of multiplicity is well-understood in the literature,
we do not analyze it here and instead focus on our amplification mechanism.
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more details in Proof of Lemma 1.12

We finish this subsection with a discussion of the economic realism of the model. We think

of specialists in our model as hedge funds and nonspecialists as households and commercial banks.

There are two important features of specialists: relative to nonspecialists, (i) they have an advantage

in producing information, and (ii) portfolio constraints matter more for them. Consistent with (i),

Koijen et al. (2019) find that hedge funds are relatively more important than other groups of investors

for incorporating information into prices. In addition, in practice, hedge funds rely more on exter-

nal financing, which is often subject to margin constraints (see Brunnermeier and Pedersen (2009)).

Importantly, the presence of nonspecialists who can freely invest in the risky asset makes our results

applicable in markets in which both sophisticated and unsophisticated investors trade, such as in the

equities market.

2.2 Financial market equilibrium at t = 1

We first solve for equilibrium in the unconstrained setting (i.e., when a(p) = −∞ and b(p) = ∞),

which was studied previously in Nezafat et al. (2017).13 We review this setting here because it is an

important benchmark in characterizing the equilibrium with constraints.

2.2.1 Unconstrained setting

Our first proposition characterizes the unconstrained equilibrium and its key features. From here

on, we use superscript “u” for variables characterizing the unconstrained setting. The corresponding

variables without superscripts are used for the constrained setting.

Proposition 1. (Financial market equilibrium without portfolio constraints) Suppose specialists have

identical signal precision τε. Then there exists a unique linear rational expectations equilibrium in

which the price is informationally equivalent to a statistic φu = v − z
βu , where βu is the unique root

of a cubic equation (17) in Appendix. Moreover, βu increases with τε, the precision of specialists’

information.

12See also Vayanos and Wang (2011), for a discussion of a related condition (equation (1.2) in their paper).
13See also Ganguli and Yang (2009) and Manzano and Vives (2011), who analyzed related settings.
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The analysis of unconstrained equilibrium highlights some important features of the model that

will continue to hold in the constrained setting. We observe, first of all, that in equilibrium, price

is informationally equivalent to a linear combination of the (learnable) fundamental payoff v and the

aggregate endowment shock z. Second, the extent of fundamental information revealed by price is

captured by an endogenous signal-to-noise ratio (βu). More precisely, the conditional variance of the

learnable fundamental decreases as βu increases, as follows:

V ar(v|p) = V ar(v|φu) = (τv + (βu)2τz)
−1. (4)

Hence, we refer to βu as the informational efficiency of the market when specialists are unconstrained

in their trading. Note that specialists’ information acquisition (higher signal precision τε) improves

the informational efficiency βu of the market.

2.2.2 Constrained setting

We now impose the portfolio constraints a(p) and b(p) on the specialist’s problem. We posit and then

verify that there exists a generalized linear equilibrium in the economy, which we define as follows.

Definition 1. A pair {g(p), β} is a generalized linear equilibrium if: (i) equilibrium price is informa-

tionally equivalent to a statistic φ = v − z
β and φ can be expressed as φ = g(p),14 (ii) specialists’ and

nonspecialists’ demands are optimal (i.e., they solve problems (1) and (2)), and (iii) market clears

(i.e., (3) holds).

The φ and β defined here are the counterparts of φu and βu in the economy without portfolio

constraints. In a generalized linear equilibrium, the price function may be nonlinear, but the statistic φ

is still linear in v and z. Therefore, φ is normally distributed, and the inference from price remains

tractable. Since equation (4) holds in a generalized linear equilibrium, we continue using β to denote

informational efficiency.

To solve for the equilibrium with constraints, one needs to pin down the informational efficiency

β and the function g(p). We do so in the following proposition.

14We say that φ is informationally equivalent to price p if conditional distributions of v|φ and v|p are the same. Our
notion of a generalized linear equilibrium follows Breon-Drish (2015).
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Proposition 2. (Financial market equilibrium with portfolio constraints) Suppose that specialists face

portfolio constraints and have identical signal precision τε. Then there exists unique generalized linear

equilibrium {g(p), β} in which informational efficiency is β = βu. The function g(p) is determined

as follows. For every p, g(p) is the unique φ that solves X(p, φ) + xm(p, φ) = 1; here, xm(p, φ) and

X(p, φ) are the aggregate demands of the nonspecialists and, respectively, specialists. If both a(p) and

b(p) are continuously differentiable, then g(p) can be determined by solving the ordinary differential

equation (ODE)

g′(p) = −
π1(p, g(p))a′(p) + π3(p, g(p))b′(p)− π2(p, g(p))cp − cmp

π2(p, g(p))cφ + cmφ
(5)

subject to the boundary condition g(0) = g0, where the constant g0 is the unique solution to X(0, g0) +

xm(0, g0) = 1. The terms π1(p, φ) and π3(p, φ) are for the fraction of specialists for whom lower and,

respectively, upper constraints binds. The term π2(p, φ) is for the fraction of unconstrained special-

ists. The coefficients, cp, cφ, c
m
p , c

m
φ characterize specialists’ and non-specialists’ aggregate demands in

unconstrained economy, given by Xu = x0 + cφφ− cpp and, respectively, xum = cm0 + cmφ φ− cmp p. The

closed-form expressions for cp, cφ, c
m
p , c

m
φ , xm(p, φ), X(p, φ), π1(p, φ), π2(p, φ), and π3(p, φ) are in the

Appendix.

Proposition 2 is our first main result establishing the existence of a tractable, generalized linear

equilibrium in an REE model with portfolio constraints, even when price may be nonlinear. It also

states that, for an exogenously given signal precision τε, portfolio constraints are irrelevant for the

informational efficiency (β = βu). This result is the key to our model’s tractability. Instead of

solving for β in the complex model with constraints, we can solve the simpler unconstrained model.

Nonetheless, it would be premature to conclude that constraints do not matter for informational

efficiency: in Section 2.3, we show that constraints affect the amount of information acquired by

specialists at t = 0. It is when the signal precision τε becomes endogenous that constraints affect

informational efficiency.

The intuition behind our irrelevance result is as follows. In general, price informativeness

is determined by aggregate trading intensity as well as aggregate hedging intensity, where trading

(hedging) intensity is the sensitivity of specialist’s demand to her private signal (endowment shock).
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For a given signal precision, funding constraints affect trading intensity ∂xi
∂si

: when constraints are

tighter, a specialist is more likely to be constrained, in which case her trading intensity is zero. As

a result, as constraints tighten, the aggregate trading intensity
∫
∂xi
∂si
di reduces. However, constraints

also affect the hedging intensity ∂xi
∂ei

in a similar way, so that the ratio of aggregate trading intensity

to aggregate hedging intensity
∫
∂xi
∂si
di/
∫
∂xi
∂ei
di remains unchanged.15 We note that our irrelevance

result is a knife-edge case, as it requires that traders with speculative and hedging reasons to trade are

identical ex-ante.16 However, it helps to make our model tractable and it also illustrates how prices

aggregate dispersed information when traders face portfolio constraints.

In essence, our irrelevance result underscores that, even with constraints, the aggregate de-

mand of specialists (and hence, the market-clearing price) still varies with and reflects fundamentals

via changes in the fractions of constrained specialists. Consider an improvement in the asset funda-

mental v (while fixing the endowment shock z), which leads specialists to increase their demand for

the risky asset. Although some specialists cannot increase their demand owing to the upper portfo-

lio constraint, in aggregate, more (fewer) specialists become constrained by a maximal long (short)

position. Aggregate demand will increase and thereby reveal the improved asset fundamentals via a

higher market-clearing price.

Besides the informational efficiency β, the other important equilibrium object g′(p), which is

given in equation (5), captures how much the statistic φ changes when the price p changes by a single

unit. The numerator in (5) represents aggregate demand’s price sensitivity, which derives from four

sources. First is the fraction π1 of specialists constrained by the lower constraint, whose demand has

price sensitivity a′(p). Second, a similar effect applies for the fraction π3 of specialists for whom the

upper constraint b(p) binds. Third, there is a fraction π2 of unconstrained specialists whose demand

has price sensitivity ∂Xu

∂p = −cp. The numerator’s last term is the nonspecialist’s demand sensitivity

to price, ∂xm
∂p = −cmp . The denominator of (5), which represents the sensitivity of aggregate demand

to φ, can be interpreted similarly.

Figure 2 plots the price as a function of the information content φ (i.e., the inverse of the

15The economic forces behind the irrelevance result are similar to the ones in Dávila and Parlatore (2017), who study
the impact of various forms (quadratic, linear, or fixed) of trading cost on informational efficiency. We focus on the
impact of general price-dependent portfolio constraints instead.

16For the same reason, introducing noise trader in our model will undermine the irrelevance result. In Appendix B,
we consider an alternative model with noise traders and study how constraints interact with information efficiency.
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Figure 2: Price function

The figure plots price p as a function of statistic φ, summarizing the information content of price for
constraints of the form a(p) = −W0/m, b(p) = W0/m for different levels of wealth: W0 = 1 (solid
line), W0 = 3 (dashed line), and W0 = 10 (thin gray line). Other parameter values are set to: m = 1,
τu = 0.1, τz = 1, τv = 1, τθ = 1, τε = 2, γ = γm = 3, and α = 0.99.
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function g(p)) under price-independent constraints of the form b(p) = −a(p) = W0/m. The shape of

this function is intuitive. When specialists are unconstrained, the price is linear in φ. Correspondingly,

when wealth W0 is high (thin grey line in the figure), the function is close to linear. Constraints distort

the price function, in particular, by reducing its sensitivity with respect to φ in the extreme region of

φ. Consider the high-φ region. All traders want to take a large long position, and specialists’ demand

is already at the upper constraint. A further increase in φ will not increase specialists’ demand. As

a result, the price rises less than it does in the case when specialists are unconstrained.17 The same

argument applies to the low-φ region. The intermediate-φ region is one in which most specialists’

demands are not restricted by the constraints, and thus the price function is close to the one in

unconstrained case. It follows that as constraints tighten (lower W0), this region shrinks.18

17It is also intuitive that the price is close to being linear in φ in that region. The price is determined by the aggregate
demand, which is a combination of: (i) the aggregate demand of specialists, which is close to constant, since most of
specialists are constrained, and (ii) the aggregate demand of nonspecialists, which is linear.

18It is clear that in our setting, constraints affect the sensitivity of the function g′(p). This distinguishes our setting
from those in Dávila and Parlatore (2017)) and Nezafat et al. (2017), where trading costs and short-sale constraints,
respectively, are irrelevant not only for informational efficiency β but also for sensitivity g′(p).
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2.3 Information acquisition at t = 0

Having solved for the financial market equilibrium at t = 1, we now study how portfolio constraints

affect the incentives of specialists to acquire information at t = 0. We maintain the assumption

a(p) ≤ 0 ≤ b(p) and say that constraints are tightened when a(p) increases and/or b(p) decreases.

We start by deriving an expression for the marginal value of information under general portfolio

constraints, after which we show that a specialist’s marginal value of information declines if the

constraints are tightened.

At date 0, specialist i decides on the optimal amount of information to acquire by solving the

following problem:

max
τε,i

E
[
−e−γ(Wi−C(τε,i))

]
.

Define the marginal value of information asMVI ≡ ∂CE′0,i(τε,i)

∂τε,i
, where CE0,i = − logE0[exp(−γWi)]

γ

is the date−0 certainty equivalent for investor i. In the next proposition, we characterize this marginal

value of information under general portfolio constraints and show that it declines when a specialist’s

constraints tighten.

Proposition 3. (Marginal value of information) The marginal value of information for a specialist i

choosing signal precision τεi, while others’ signal precisions are τε, is given by

MVI(τε,i, τε) =
τi

2τ2
v,iγ︸ ︷︷ ︸

MVI if specialist i was unconstrained

+
τi

2τ2
v,iγ

(
Uu0 (τε,i, τε)

U0(τε,i, τε)
− 1

)
︸ ︷︷ ︸

Effect of constraints, <0

, (6)

where τv,i = V ar(v|Fi) is the total precision of specialist i’s information about the learnable component,

Uu0 (τε,i, τε) = E[−e−γCE1,iIxui =xi ] is the expectation of utility in the states when constraints do not bind,

and U0(τε,i, τε) = E[−e−γCE1,i ] is date-0 expected utility. The marginal value of information decreases

when an individual specialist’s constraints become tighter, ceteris paribus.

Proposition 3 shows how portfolio constraints affect a specialist’s incentive to acquire infor-

mation. If the specialist was unconstrained, he has stronger incentive to acquire information, as the

term capturing the effects of constraints in equations (6) is negative. It makes sense that a specialist
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considers information valuable to the extent that he can profit from it. In short, constraints reduce

specialists’ incentives to acquire information. We will examine the equilibrium information choice in

section 3.2.

3 Margin requirements and informational efficiency

So far we have studied general, price-dependent portfolio constraints. In this section, we apply our

model to study the constraints arising from margin requirements. Our notion of margin requirements

is standard and closely follows Brunnermeier and Pedersen (2009). To build a long position in the

risky asset, a specialist can borrow from a financier at the risk-free rate, but he has to pledge a cash

margin of m+(p) ≥ 0 per unit of asset to the financier as collateral. The specialist can similarly

establish a short position by providing, as collateral, a cash margin of m−(p) per unit of asset. Thus,

specialists face a funding constraint that the total margin on their positions cannot exceed their initial

wealth, as follows:

m−(p)[xi]
− +m+(p)[xi]

+ ≤W0,

where [xi]
− and [xi]

+ are, respectively, the positive and negative parts of xi.
19 We can rewrite the

margin requirements in the form of portfolio constraints as

a(p) = − W0

m−(p)
, b(p) =

W0

m+(p)
. (7)

Equation (7) shows that a specialist faces tighter constraints when his initial wealth is lower and/or

if the financier’s margin requirements are higher.

3.1 Financiers and VaR-based margins

We assume that there is a unit continuum of financiers with CARA utility, with absolute risk aversion

γF . Financiers can participate in financial market, are uninformed, and get no endowment shocks.

Thus, their problem of investing in financial market is given by (2), with γm substituted by γF .

Standard aggregation results (see Mas-Colell, Whinston, and Green (1995), Chapter 4) imply that

19Since the endowment bi is not pledgeable, it cannot be used as a collateral to satisfy the margin requirements.
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financiers and nonspecialists can be aggregated into one representative agent. Thus, parameter γm

should be interpreted as the absolute risk aversion of such representative agent, and the analysis of

the model done so far is unchanged.20

Motivated by the real-world margin constraints faced by hedge funds, we assume that each

financier sets her margin in order to control her VaR, similar to Brunnermeier and Pedersen (2009)

as follows:

m+(p) = inf{m+(p) ≥ 0 : PrQ(p− f > m+(p) | p) ≤ 1− α} and

m−(p) = inf{m−(p) ≥ 0 : PrQ(f − p > m−(p) | p) ≤ 1− α}, (8)

where “PrQ” stands for “risk-neutral probability.” Equation (8) shows that the financier requires the

specialists to set aside a minimum amount of cash (i.e., margin) large enough to cover, with (risk-

neutral) probability α, the potential loss from trading. In Appendix C.1, we show how to calculate

risk-neutral probabilities. In particular, we derive that the risk-neutral distribution of fundamental f

given prices p, is Gaussian, with mean p and variance V ar(f |p). (See Lemma 9.) In Appendix C.2, we

provide a microfoundation for the use of VaR-based margin by financiers, when specialists can default

and financiers have to incur a cost to enforce repayment.

We note that in our approach the VaR is evaluated under the risk-neutral measure, in the

spirit of Ait-Sahalia and Lo (2000).21 In order to avoid additional effects stemming from restriction

in market participation, we assume that financiers can participate in the equity market, and thus the

risk-neutral measure is adopted.22

20It is easy to derive that the risk aversion of the representative agent is given by (1/γnonspecialist + 1/γfinancier)
−1.

21Ait-Sahalia and Lo (2000) use risk-neutral (option-implied) probabilities to estimate the economic value of VaR. As
we show in our microfoundation in Appendix C.2, financiers who participate (do not participate) in the equity market
evaluate VaR under the risk-neutral (physical) measure. Note that in Brunnermeier and Pedersen (2009), the VaR is
evaluated under the physical measure. In Appendix E we consider such margin specification and show that our results
continue to hold, provided that nonspecialists’ risk-aversion is not too large.

22This also allows us to contrast our results with those in intermediary asset-pricing literature, where restricted
participation is a key friction.
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3.2 Margins and information efficiency in equilibrium

We are now ready to define the equilibrium of the model, in which both margin requirements and

specialists’ information acquisition are endogenously determined.

Definition 2. An equilibrium with endogenous margins and information acquisition is defined as

follows. (i) At time t = 1, financiers set their margin requirements according to (8), given a conjec-

tured price function. (ii) At time t = 1, specialists and nonspecialists choose their optimal demand,

given margin requirements and the conjectured price function. (iii) The conjectured price function is

consistent with market clearing. (iv) At time t = 0, specialists optimally acquire information.

To clearly illustrate the interaction between information acquisition and margin requirements,

we proceed with studying two partial equilibria—one with exogenous precision of specialists’ signals

and the other with exogenous margins. We first consider how an exogenous increase in specialists’

information acquisition affects the endogenous VaR margins set by financiers via informational effi-

ciency. To this end, we consider a partial equilibrium, which satisfies conditions (i), (ii), and (iii) in

Definition 2, called equilibrium with exogenous information, and do comparative statics with respect

to τε in that equilibrium.

Proposition 4. (Information choice affects margin requirements) For a given level of precision of all

specialists’ signals τε, there exists a unique equilibrium with exogenous information. In this equilibrium,

margins are given by

m+ = m− = Φ−1(α)
√

(τv + β2τz)−1 + τ−1
θ . (9)

Consequently, if τε decreases (and hence the informational efficiency (β) drops) the margins (m+ and

m− both) increase. Moreover, the effect is stronger when financiers tolerate less VaR (α is higher),

i.e., ∂2m
∂α∂β < 0.

Proposition 4 states that a decrease in specialists’ information acquisition, which causes a

decline in informational efficiency, tightens constraints. A reduced informational efficiency implies

that the price tracks fundamentals less closely. As a result, the specialists’ trading profit becomes

more volatile. Financiers who set margins based on the VaR of specialists’ profit in turn demand

higher margins. This is illustrated in steps (2) and (3) of Figure 1.
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Figure 3: How tightness of constraints affects information acquisition

The figure plots equilibrium precision of information τ∗ε as a function of wealth W0, for m+ = m− = m,
where m = 1 (solid line) and m = 2 (dashed line). Other parameter values are set to τv = 1, τz = 2,
τθ = 2.75, τu = 0.4, γ = 0.5, γm = 1, α = 0.99, and τε = 0.1. We assume that the cost function is
C(τε) = k0(τε − τε)2, where k0 = 0.1.
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Next, we study how an exogenous increase in margin requirements affect specialists’ information

choices. To this end, we consider a partial equilibrium that satisfies conditions (ii), (iii), and (iv) in

Definition 2, called equilibrium with exogenous margins, and do comparative statics with respect to

m+ and m− in that equilibrium.

Proposition 5. (Margins and wealth affect information acquisition) For given margin requirements

m+ and m−, there exists at least one stable equilibrium with exogenous margins. In any such stable

equilibrium, there exists a threshold Ŵ 1 > 0 such that for all 0 < W0 < Ŵ 1, specialists’ equilib-

rium information acquisition τ∗ε decreases when W0 drops and/or margins m+/m− increase for all

specialists.23

Proposition 5 states that as specialists’ face higher margin requirements, they become more

constrained and the marginal value of information decreases, discouraging information acquisition.

This is illustrated in steps (4) and (1) of Figure 1. Since specialists’ wealth is used to satisfy margin

requirements, Proposition 5 also implies that wealth plays an important role in our model—in contrast

to typical CARA-Normal models.

23Our notion of stability is as in Manzano and Vives (2011) and Cespa and Foucault (2014) and is standard in game
theory (see Fudenberg and Tirole (1991), Chapter 1, 1.2.5). We call an equilibrium stable if the fixed point determining
equilibrium precision of specialists’ signals is stable. More specifically, we call an equilibrium stable if |τ ′ε,i(τ∗ε )|< 1, where
τε,i(τ

∗
ε ) is specialist i’s optimal choice of precision given that all other specialists’ precisions are equal to τ∗ε .
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Figure 3 plots the equilibrium information choice τε as a function of investors’ wealth (x-axis)

and for different levels of margins. Consistent with Proposition 5, as investors wealth drops, constraints

tighten and investors’ marginal value of information drops, which lowers the equilibrium information

acquired. While a small enough W0 is needed for the proof, numerical simulations show that the

results hold more generally. Thus, we view the requirement of a small W0 in Proposition 5 as technical

and not restrictive for the economic mechanism.

We next combine the two partial equilibrium analyses and establish existence of full equilibrium,

that is, an equilibrium that satisfies all conditions in Definition 2.

Proposition 6. (Existence of full equilibrium) Suppose that C ′′(τε,i) > C for all τε,i, where C is finite

and is defined in the Appendix. Then there exists at least one stable full equilibrium.

The sufficient condition for equilibrium existence is a sufficiently convex cost function to guar-

antee the convexity of each specialist’s information choice problem. This technical restriction is needed

because the value of information is not necessarily concave in the presence of constraints.24 From now

on we maintain this sufficient condition (stated below).

Assumption 3. The cost function is such that C ′′(τε,i) > C for all τε,i.

We will end this subsection with a few remarks about the results.

Remark 1. Informational efficiency affects in constraints even if financiers do not learn from prices.

We emphasize that this section’s results do not rely on financiers learning from prices. Indeed, one

can compute the unconditional variance of returns under the risk-neutral measure as

V arQ[f − p] = EQ[V arQ[f − p|p]] + V arQ[EQ[f − p|p]] = EQ[V arQ[f − p|p]].

In the equation above we used the fact that p = EQ[f |p]. It follows from normality of f |p under

the risk-neutral measure (Lemma 9 in Appendix C.1), that the conditional variance V arQ[f − p|p] is

constant and therefore equal to the unconditional variance V arQ[f−p]. This implies that the financier

will set the same margins irrespective of whether (or not) she learns from prices.

Remark 2. Alternative risk-based margins. Our result that margins increase when informational effi-

ciency falls holds also for alternative risk-based margins, such as tail value-at-risk (TVaR) and expected

24The potential non-concavity of value of information is due to constraints, as in Nezafat et al. (2017).
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shortfall (ES). This is because all these risk measures depend on the conditional distribution of the

loss p−f ( f −p) for a long (short) position, given p. Under the risk-neutral measure this distribution

is normal with mean zero and variance V arQ[f |p]. Hence, the distribution is parameterized by a single

parameter, V arQ[f |p]. Since VaR, ES, and TVaR are all monotone in V arQ[f |p], it follows that results

in this section are robust to using these alternative risk-based margins.

3.3 Information spiral

In Proposition 5, we undertook a partial equilibrium analysis and argued that given margins, tighter

funding constraints (e.g., reductions in wealth) lead to lower informational inefficiency because special-

ists acquire less information. In Proposition 4, we argued that, for a given level of wealth, reduction in

information acquisition leads to higher margins. Putting these two results together yields the amplifi-

cation loop that we call the information spiral. (See Figure 1, in Section 1, for an illustration.) In this

section, we discuss two main implications of the information spiral. First, the negative effect of tight-

ening funding constraints on informational efficiency is amplified. Second, strategic complementarities

arise among specialists’ information choices and among financiers’ margin requirements.

3.3.1 Effect of wealth on informational efficiency and margins

As illustrated in Figure 1, the information spiral amplifies a negative shock to specialist wealth into a

decrease in informational efficiency (β) and an increase in margin requirements (m+ and m−). Thus,

we have the following result.

Proposition 7. There exists a threshold Ŵ 2 > 0 such that for all 0 < W0 < Ŵ 2, in a stable

equilibrium, a decrease in specialist wealth W0 decreases informational efficiency β and increases VaR-

based margins m+,m−.

Proposition 7 suggests that the effect of wealth, a determinant of constraints, on information

efficiency is reinforced in two steps: specialists with less wealth have tighter portfolio constraints and

hence acquire less information. As a result, prices become less informative. The reduced informational

efficiency in turn induces financiers to require more margins, further tightening portfolio constraints
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and harming information efficiency.25

3.3.2 Complementarity in information acquisition

Our mechanism underpins a novel source for strategic complementarity in specialists’ decisions to

acquire information. Consider a specialist i and suppose that other specialists acquire less information.

The price then becomes less informative about the asset fundamentals; hence, the financier of the

specialist i sets higher margin. With a tightened funding constraint, the specialist values information

less and acquire less of it.

As standard in REE models (e.g., Grossman and Stiglitz (1980)), there is also a substitutabil-

ity effect in information acquisition: when other specialists acquire more information, price is more

informative about fundamentals, and hence, there is less incentive for a specialist i to acquire private

information. The question then is: when does, if at all, the complementarity effect dominate the

substitutability effect? The following proposition answers this question.

Proposition 8. Consider a specialist i choosing his signal precision τε,i, while others’ signal precisions

are τε. Suppose also that the parameters of the model are such that the condition (C1) in the proof holds.

Then there exists a threshold Ŵ 3 > 0 such that for any 0 < W0 < Ŵ 3 we have that
∂MVI(τεi ,τε;W0)

∂τε
>

0. That is, if (C1) holds and specialists’ wealth W0 is small enough, there is complementarity in

information acquisition.

Condition (C1) of Proposition 8 characterizes the combination of parameters of the model, for

which the complementarity in information acquisition emerges when wealth is low. This combination of

parameters is shown in the grey region in Figure 4, panel (a). Hence, Point A (B) in panel (a) of Figure

4 presents a combination of parameters for which this condition holds (does not hold). Panel (b) shows

how the partial derivative of marginal value of information with respect to other investors’ information

choice varies with wealth. There is complementarity when this partial derivative is positive. One can

see that for parameters corresponding to point A (solid line), there is complementarity when wealth

is small. In contrast, for parameters corresponding to point B (dashed line), there is substitutability

in information acquisition for all levels of wealth.

25As in Proposition 5, we view the requirement of a small W0 as technical and the result holds numerically for a wide
range of values of W0 we have tried.

22



Figure 4: Complementarity in information acquisition

The shaded region of panel (a) represents the combination of parameters τu and τv, for which condition
(C1) holds. Panel (b) plots ∂MVI(τε,i, τε,W0)/∂τε against W0 for the paremeters corresponding to
points A and B, marked on the plot in panel (a). Point A: τu = 0.4, τv = 0.5. Point B: τu = 0.8,
τv = 1.2. Other parameter values are set to: τz = 2, τθ = 2.75, τε,i = τε = 0.2 γ = 0.5, γm = 1, and
α = 0.99.
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(b) Dependence of ∂MVI(τε,i, τε,W0)/∂τε on W0.

Condition (C1) ensures that the complementarity effect operating through changes in investor

i’s likelihood of being constrained is stronger than the Grossman-Stiglitz substitutability effect. To

get more intuition about condition (C1), Figure 4, panel (a) plots the region of parameters where

condition (C1) holds (in grey). First, note that for any given τu, condition (C1) doesn’t hold for high

τv, that is, less volatile fundamentals. Intuitively, there is no complementarity when τv is high, since

when fundamental volatility is low, the price tracks fundamentals closely even if specialists acquire

little information. Thus, margins are low and are insensitive to how much information specialists

acquire, weakening step 3 in information spiral in Figure 1.

Second, for any given τv, condition (C1) holds for τu not too high and not too low, that is,

for moderately volatile idiosyncratic endowment shocks. If idiosyncratic endowment shocks are less

volatile (high τu), specialists who know z + ui can almost perfectly infer the aggregate endowment

shock z, thereby filtering out the noise in prices and learning the fundamentals from price. This

strengthens the Grossman-Stiglitz substitutability effect. Thus, there is no complementarity for very

high τu. When idiosyncratic endowment shocks are very volatile (low τu), the desired demand of a

specialist i is very volatile, and thus, he is likely to be constrained even if other specialists acquired

a lot of information and margins are low. This weakens step 1 in the information spiral in Figure 1.
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Thus, there is no complementarity for very low τu.

3.3.3 Complimentarity in margin requirements

Another strategic complementarity that arises from the information spiral is among financiers’ margin

requirements. Consider a financier indexed by i. An increase in margins required by other financiers

discourages their specialists from acquiring information (by Proposition 5). As a result, prices become

less informative, and financier i responds by setting higher margins (cf. equation (9)). This result is

formally proven in the proposition below and is illustrated in Figure 5. One can see that unlike the

complementarity in information choice, a complementarity in margin requirements is always present.26

Proposition 9. Suppose that the conditions of Proposition 5 hold. Then, when all the financiers

other than i increase their margins m, it is optimal for financier i to increase his margin as well.

Figure 5: Complimentarity in margin requirements
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The optimal margin mi(m) for financier i, given that other financiers set margin equal to m for
W0 = 1.5 (solid line) and W0 = 0.7 (dashed line). Other parameter values are set to: τv = 1, τz = 2,
τθ = 2.75, τu = 0.4, γ = 0.5, γm = 1, α = 0.99, and τε = 0.1. We assume that the cost function is
C(τε) = k0(τε − τε)2, where k0 = 0.1.

This complementarity suggests that changes in some financiers’ margin requirements, for ex-

ample, due to changes in regulations, can cause otherwise unrelated financiers to change their margin

requirements, affecting wider equilibrium outcomes like aggregate asset prices and information effi-

ciency. Our mechanism highlights the general equilibrium effects that policymakers may want to take

26Here we make the same remark as for Proposition 5 that while a small enough W0 is needed for analytical proof,
numerical simulations show that the result holds generally.

24



into account.

4 Asset-pricing implications

In this section we derive the implications of a decline in specialists’ wealth on the risky asset’s equi-

librium risk premium and return volatility. The main result in this section is that a drop in wealth,

ceteris paribus, leads to an increase in the risk premium, return volatility, and the Sharpe ratio, when

specialists’ wealth W0 is small.

Definition 3. The risk premium, variance, and the Sharpe ratio of returns are defined as follows:

r̄p(W0, τε) ≡ E[f − p], V(W0, τε) ≡ V ar[f − p], SR(W0, τε) =
E[f − p]√
V ar[f − p]

. (10)

The volatility of returns is defined as the square root of return variance.

Results

The change in risk premium in response to a change in the specialists’ wealth can be decomposed as

follows:

dr̄p(W0, τε)

dW0
=

∂r̄p

∂W0︸ ︷︷ ︸
Direct Effect

+
∂r̄p

∂τε

∂τε
∂W0︸ ︷︷ ︸

Indirect Effect

. (11)

The first term in the right-hand side of equation (11) captures the direct effect that a change in

specialists’ wealth has on the risk premium; the second term captures the indirect effect resulting

from specialists’ endogenous information acquisition decisions. Similarly, we decompose the change in

volatility and the Sharpe ratio in response to a change in specialists’ wealth into the direct and indirect

effect. The following proposition establishes the effect of wealth W0 on risk premium, volatility, and

the Sharpe ratio.

Proposition 10. (Asset-pricing implications) There exists a threshold Ŵ > 0 such that for all W0 ∈

(0, Ŵ ), we have dr̄p
dW0

< 0, d
√
V

dW0
< 0 and dSR

dW0
< 0. Moreover, (i) the direct effect of wealth on volatility

is second order compared to indirect effect when wealth is low, that is, lim
W0→0

∂
√
V

∂W0
∂
√
V

∂τε

dτε
dW0

= 0; (ii) the direct

effect of wealth on risk premium is negative for all levels of wealth, that is, ∂r̄p
∂W0

< 0 for all W0.

25



Figure 6: Effect of wealth on risk premium, volatility, and the Sharpe ratio

The figure plots the direct effect, ∂Y
∂W0

(dashed lines), indirect effect ∂Y
∂τε

dτε
dW0

(dotted lines), and total

effect ∂Y
∂W0

+ ∂Y
∂τε

dτε
dW0

(solid lines) of wealth on risk premium (panel (a), Y = r̄p), volatility (panel (b),

Y =
√
V), and the Sharpe ratio (panel (c), Y = SR). The parameter values are set to: τv = 1, τz = 2,

τu = 0.1, τθ = 2.75, γ = 0.5, γm = 1, τε = 0.1, and α = 0.99. We assume that the cost function is
C(τε) = k0(τε − τε)2, where k0 = 0.1.

Total
Direct
Indirect

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

W0

(a) Effect of wealth on
risk premium

Total
Direct
Indirect

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

W0

(b) Effect of wealth on
volatility

Total
Direct
Indirect

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.8

-0.6

-0.4

-0.2

0.0

W0

(c) Effect of wealth on
the Sharpe ratio

Figure 6 plots the derivative of unconditional risk premium (panel (a)), volatility of returns

(panel (b)), and the Sharpe ratio (panel (c)) with respect to wealth as a function of wealth. Note that

the solid line in all panels is always below zero, which implies that as wealth drops, risk premium,

volatility, and the Sharpe ratio rises. Moreover, note that as wealth drops, the effect is getting stronger.

This implies that effect of small change in wealth on each of these objects is stronger when the wealth

is already low, that is, crisis periods. Next, we split the total effect into direct and indirect effect as

in equation (11) to see the effect of endogenous information choice of specialists.

Risk Premium: The results for direct and indirect effects are shown in Figure 6, panel (a) in dashed

line and dotted line, respectively. Holding τε fixed, as wealth drops, constraints become tighter and

specialists’ capacity to go long or short the asset is diminished, which is similar to the effect of lowering

their risk-bearing capacity (i.e., increasing their risk aversion). Therefore, the risk premium rises. This

argument implies that absent the information acquisition channel (i.e., holding τε fixed), the wealth

drop would cause an increase in risk premium. This reflects the direct effect in equation (11) and is

shown in the dashed line. Moreover, as wealth drops, because of the information spiral, specialists in

equilibrium acquire less information (lower τε), which leads to an additional increase in risk premium,

which is the indirect effect given in (11) and is shown in the dotted line. In Proposition 10, while
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small enough wealth is needed for the indirect effect to be negative, numerical simulations show that

the results are more general and the requirement of small wealth is only technical.

Return Volatility: We split the total effect for volatility into direct and indirect effect as in equation

(12) to see the effect of endogenous information choice of specialists.

d
√
V(W0, τε)

dW0
=

∂
√
V

∂W0︸ ︷︷ ︸
Direct Effect

+
∂
√
V

∂τε
.
∂τε
∂W0︸ ︷︷ ︸

Indirect Effect

. (12)

The results are shown in Figure 6, panel (b) in the dashed line (direct effect) and dotted line (indirect

effect). The direct effect is almost zero when wealth is small. However, specialists acquire less informa-

tion when they are constrained, so there is an increase in volatility corresponding to the indirect effect

(which operates through the information acquisition channel). Overall, return volatility increases as

wealth declines. For small wealth, Proposition 10 implies that indirect effect always dominates direct

effect, highlighting the importance of our information acquisition channel.

The Sharpe ratio: Figure 6, panel (c) plots the derivative of the Sharpe ratio with respect to wealth

as a function of wealth, that is, dSRdW0
vs W0 (solid line). Even though risk premium and volatility both

rise as wealth falls, the Sharpe ratio also increases when wealth is small enough.

5 Empirical implications

We start by providing suggestive evidence for our mechanism and then discuss its other empirical

implications. The main and novel implication of our mechanism is that specialists’ wealth and stock

price informativeness are positively related. We proxy for specialists’ wealth with the primary dealers’

capital ratio, as in He, Kelly, and Manela (2017). Following Weller (2017), we construct a measure

of stock price informativeness called the price jump ratio. The price jump ratio divides the return at

the time of earnings announcement to the total return over the pre-announcement period. The higher

this measure, the less information has entered the stock prices before the announcement, indicating

lower price informativeness.27 Our model therefore implies that the primary dealers’ capital ratio and

27Weller (2017) argues that the price jump ratio measures information acquisition because it captures the fraction of
acquirable information about an event being incorporated into prices before the event’s public disclosure—in line with
information acquisition channel that our baseline model highlights.
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Figure 7: Price informativeness and financial constraints

The figure plots the quarterly price jump ratio (as constructed by Weller (2017)) and quarterly equity
capital ratio of primary dealers (as constructed by He et al. (2017)) between 1995 and 2013. Both the
time series are normalized to have mean 0 and standard deviation of 1. The plot also shows the time
trends (dotted lines) of both series. The correlation between these two series is statistically significant
-0.59.

the price jump ratio should be negatively correlated.

Data Description: We conduct our analysis using quarterly data from 1995 to 2013. We obtain

equity capital ratio of primary dealers in He et al. (2017) from the authors’ website. We obtain stock

price data from the Center for Research in Security Prices (CRSP) to compute the price jump ratio.

The sample contains publicly listed non-financial firms from 1995 to 2013. After constructing the price

jump ratios at the stock level, we value-weight these ratios to construct the price jump ratio at the

aggregate level.

Findings: Figure 7 illustrates the main empirical finding of the paper. It shows that the time series

of the aggregate price jump ratio (blue) and the equity capital ratio of primary dealers (red). It is

evident from the figure that the two ratios are negatively related. The correlation coefficient (−0.6)

is also statistically significant.

Other predictions: Our model also implies that an exogenous decrease in margin requirements

should lead to an increase in informational efficiency of prices (Proposition 5). For proxies for price
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informativeness, see Weller (2017), Bai, Philippon, and Savov (2016), Farboodi, Matray, and Veldkamp

(2018). and Dávila and Parlatore (2018). One source of exogenous shocks to margin requirements could

come from policy changes. For instance, Jylha (2018) argues that the New York Stock Exchange’s

portfolio Margining Pilot Program of 2005–2007 was an exogenous shock that relaxed the margin

constraints of index options but not of individual equity options. Our model predicts that following the

pilot program, the price informativeness of index options should increase more than that of individual

equity options.

Finally, our model implies that an exogenous drop in informational efficiency should result in an

increase in margin requirements (Proposition 4). The shutting down of a broker (Kelly and Ljungqvist,

2012) or the merger of brokers (Hong and Kacperczyk, 2010) could be exogenous shocks to the activity

of analysts, and hence, to price informativeness. Moreover, the magnitude of this mechanism is likely to

vary over time. Proposition 4 implies that the impact of changes in informational efficiency on margin

requirements should be stronger when the financiers are less risk-tolerant to specialists’ trading loss.

Financiers in reality may become effectively less risk-tolerant due to new regulations. For example,

Boyarchenko, Eisenbach, Gupta, Shachar, and Van Tassel (2018) provide evidence that the post-crisis

regulations make global systemically important banks less willing to finance hedge funds’ arbitrage

activities. Our model suggests that in the post-crisis regulations era, margin requirements should

become more sensitive to informational efficiency of prices.

6 Discussion and Extensions

We have made several assumptions in the analysis for tractability and to highlight the underlying

mechanism in the clearest manner. In this section, we show the robustness of our main results in

alternative environments and discuss the additional implications we derive in these alternative envi-

ronments.

1. Noise trading: As discussed in the introduction, constraints in general can affect price informa-

tiveness via traders’ information acquisition incentives and the information aggregation function

of prices. In our baseline model, we focus solely on the information acquisition channel. This is

possible because of the irrelevance result, which in turn stems from the assumption that noise in
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prices comes from specialists’ hedging needs. In Appendix B, we consider an alternative setting

in which the noise in prices comes from exogenous noise traders who are not affected by con-

straints. We argue that in the alternative setting, constraints and price informativeness interact

in a similar way via the information aggregation channel.

In the alternative setup, tightening the funding constraints of informed specialists reduce their

aggregate trading intensity but not the noisy supply. This hurts price informativeness, even for a

given quality of private information. The reduction in price informativeness leads to an increase

in margins, for similar reasons discussed in the baseline model. Hence, via a different channel, the

self-reinforcing interaction between tightness of constraints and price informativeness continues

to hold. Thus, the channel presented in Appendix B would perhaps reinforce the results in the

baseline model. The baseline model keeps the focus on the information acquisition channel while

maintaining tractability.

2. Endowment of risky assets: In the baseline model, we assume that specialists have cash as initial

endowment. In Online Appendix D, we instead assume that specialists are endowed with some

risky assets and show that the information spiral continues to hold in this economy.

3. VaR under the physical measure: In the baseline model, we assume that the financiers use the

risk-neutral measure to compute the VaR. The advantage of using the risk-neural measure is

that the VaR-based margins will be independent of price level. In Online Appendix E, we study

the case in which the financiers use the physical measure to evaluate risk.28 There, margins will

depend on the price level. We show that when the nonspecialists’ risk aversion is not too high,

all the results associated with the information spiral continue to hold.

4. Robustness of low wealth results: In the baseline model, we prove that Propositions 5, 7, 8, and

10 hold when wealth is low enough. This does not imply that wealth is high, those results do not

hold. While a small enough wealth is needed for the analytical proofs, numerical simulations show

that Propositions 5, 7, and the part of Proposition 10 concerning risk premium hold generally.29

28We also micro-found the use of physical measures by the financiers who do not participate in the equity market in
Appendix E.

29For all combinations of parameters of the model we tried we could not find finite wealth thresholds for these propo-
sitions. Thus, numerically, these propositions seem to hold for all levels of wealth.
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7 Conclusion

In this paper we developed a tractable REE model with general portfolio constraints, and we applied

our methodology to study an REE model with margin constraints. We argued that funding constraints

affect and are affected by informational efficiency, leading to a novel amplification mechanism that we

call the information spiral. This spiral implies that the risk premium, return volatility, and the Sharpe

ratio each rise as specialists’ wealth declines. The information spiral also generates complementaries

in: (i) margin requirements and, during crises, (ii) the specialists’ acquisition of information. Com-

plementary to existing intermediary-based crisis narratives in which nonspecialists are restricted from

participating in the asset market, our mechanism shows how intermediaries matter even in markets

such as the equity market, where all investors can freely participate.

While other papers describe mechanisms for amplification over the business cycle and highlight

the importance of specialist investors for asset prices, our paper is different because it involves changes

in price informativeness and the interaction with constraints. Given the important role financial

markets play in aggregating and disseminating information, as argued by Bond et al. (2012), our

mechanism could have significant real implications.
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Appendices

A Proofs

Lemma 1. If Assumption 2 holds, then E[− exp (−γCE1,i)] is finite.

Proof. We decompose the expectation into three parts, as follows:

E[− exp (−γCE1,i)] = E[− exp (−γCE1,i) I(xui > b)]+ (13)

+ E[− exp (−γCE1,i) I(a ≤ xui ≤ b)] (14)

+ E[− exp (−γCE1,i) I(xui < a)]. (15)

Step 1. The expectation in (13) is finite if Assumption 2 holds. For xui > b, we can write (13) as follows:

E[− exp (−γCE1,i) I(xui > b)] = E[− exp (−γW2) I(xui > b)]

where
W2 = W0 + b(v + θ − p) + eiθ.

We write the expectation explicitly

E[− exp (−γW2) I(xi > b)] =

∫
− exp (−γ (W0 + b(v + θ − p) + eiθ)) I(xui > b)dFuidFεidFvdFzdFθ

>

∫
− exp (−γ (W0 + b(v + θ − p) + eiθ)) dFuidFεidFvdFzdFθ. (16)

It suffices to prove that (16) is finite. We compute the expectation with respect to θ:

Eθ [exp (−γ (W0 + b(v + θ − p) + eiθ))] = exp

(
−γ
(
W0 + b(v − p)− γ

τθ
(ei + b)

2

))
= exp (−γ (W0 + b(v − p))) exp

(
γ2

τθ
(ei + b)

2

)
.

From the above it is clear that the only “problematic” term is exp
(
γ2

τθ
(ei + b)

2
)

. Thus, it suffices to

show that

Ez,ui

[
exp

(
γ2

τθ
(z + ui + b)

2

)]
<∞.

For the latter to hold it suffices to show that Ez,ui

[
exp

(
γ2

τθ

(
z2 + u2

i

))]
<∞. We write the latter expectation

explicitly
τzτu
2π

∫
exp

((
z2

(
γ2

τθ
− τz

2

)
+ u2

i

(
γ2

τθ
− τu

2

)))
duidz.

Clearly, the integral in the preceding displayed equation converges provided that Assumption 2 holds.

Step 2. The expectation in (14) is finite if Assumption 2 holds. For a < xui < b, we can write (14) as
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follows:

E[− exp (−γCE1,i) I(a ≤ xui ≤ b)] = E

[
− exp

(
−γ
(
W0 +

γ

2τi
(xui )

2 − γ

2τθ
e2
i

))
I(a ≤ xui ≤ b)

]
>

∫
− exp

(
γ2

2τθ
e2
i

)
dFuidFz

Following the analysis in step 1, one can get that the last expectation is finite if Assumption 2 holds.

Step 3. The expectation in (15) is finite if Assumption 2 holds. The proof is analogous to step 1 and is
omitted for brevity.

A.1 Proof of Proposition 1

Proof of Proposition 1. At time 1, the first-order condition for specialist i solving problem (1) is given by

xi =
τ

γ

(
E [v|Fi]− p− γeiτ−1

θ

)
, where τ−1 = V ar [v + θ|Fi] .

Similarly, the first-order condition for the nonspecialist solving problem (2) is

xm = τm
E [v|φ]− p

γm
, where τ−1

m = V ar [v + θ|φ] .

Using Bayes’s rule for jointly normal random variables, we can write

E [v|Fi] =
τεsi + β2 (τu + τz)φ+ βτuei

τε + β2 (τu + τz) + τv
and

1

τ
=

1

τε + β2 (τu + τz) + τv
+

1

τθ
, and

E [v|φ] =
β2τz

β2τz + τv
φ and

1

τm
=

1

β2τz + τv
+

1

τθ
.

Substituting these into the market clearing condition (3), we get

τ

γ

(
τεv + β2 (τu + τz)φ+ βτuz

τε + β2 (τu + τz) + τv

)
− τ

τθ
z +

τm
γm

β2τzφ

β2τz + τv
= p

(
τ

γ
+
τm
γm

)
.

One can express equilibrium price p = p(v, z) from the above equation. Since it can only depend on v and z
through φ = v − 1

β z, it must be true that ∂p
∂v/

∂p
∂z = −β. This implies that β satisfies

β3γ (τu + τz)− β2τuτθ + βγ (τε + τv)− τθτε = 0. (17)

It can be seen from the above equation that the solution to it is always positive and there exists at least
one solution. The solution is unique if the first derivative of the above polynomial does not change sign. The
first derivative of the above equation is given by

3β2γ (τu + τz)− 2βτuτθ + γ (τε + τv) .

At β = 0, the slope is positive, and the slope is always positive if the above equation has no roots. This
is true if and only if

τ2
uτ

2
θ < 3γ2 (τu + τz) (τε + τv) .

Using implicit differentiation of (17), β increases in τε if and only if τθ − βγ > 0, which always holds for β
solving equation (17).
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The aggregate demand of specialists and nonspecialists can be written as

Xu(p, φ) = c0 + cφφ− cpp and xm(p, φ) = cm0 + cmφ φ− cmp p,

respectively. The individual demand of specialist i can be written as follows:

xui = Xu + ξi, where ξi ∼ N (0, σ2
ξ ) are i.i.d. across specialists.

We now provide expressions for the coefficients mentioned above. Since the aggregate demand of specialists and
the nonspecialist can depend on v only through φ, we find

cφ =
τ

γ

∂E[v|Fi]
∂v

=
τ

γ

(
τε + β2 (τu + τz)

τε + β2 (τu + τz) + τv

)
, and (18)

cmφ =
τm
γm

∂E[v|φ]

∂v
=
τm
γm

β2τz
β2τz + τv

. (19)

Similarly,

cp =
τ

γ
, cmp =

τm
γm

.

Finally,

ξi =
τ

γ

(
τεεi + βτuui

τε + β2 (τu + τz) + τv
− γuiτ−1

θ

)
, and

σ2
ξ =

(
τ

γ

)2
(
τε +

(
βτu − γτ−1

θ

)2
τ−1
u

(τε + β2 (τu + τz) + τv)2

)
.

The coefficients c0 and cm0 are both zero.

A.2 Proof of Proposition 2

Proof of Proposition 2. We first define a function T (x; a, b) that truncates its argument x to the interval
[a, b]:

T (x; a, b) =


x, if a ≤ x ≤ b,
b, if x > b, and

a, if x < a.

(20)

Conjecture that there exists a generalized linear equilibrium with informational efficiency β. Investor i’s demand
can then be written as

xi = T
(
xdi ; a(p), b(p)

)
.

Moreover, as in the proof of Proposition 1, one can find specialist i’s desired demand xdi (or the amount he
would like to trade, in the absence of constraints) as

xdi = Xd + ξdi ,

where aggregate desired demand Xd is Xd = c0 + cφφ− cpp and the idiosyncratic part of the desired demand is

ξdi =
τ

γ

(
τεεi + βτuui

τε + β2 (τu + τz) + τv
− γuiτ−1

θ

)
.

By the exact law of large numbers, one can write the aggregate demand of specialists as

X =

∫
xidi = Eξi

[
T
(
Xd + ξdi ; a(p), b(p)

)]
.
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For a given price p, the aggregate demand X is an increasing (and thus invertible) function of the aggre-
gate desired demand Xd. Therefore, given p, one can compute Xd, from which one can express η(φ, v, z) ≡
τ
γ

(
τεv+β2(τu+τz)φ+βτuz
τε+β2(τu+τz)+τv

)
− τ

τθ
z. Thus, the price in the constrained economy is informationally equivalent to η.

However, in the generalized linear equilibrium, the price must be informationally equivalent to φ. For this to

hold we need −∂η(φ,v,z)
∂v /∂η(φ,v,z)

∂z = β, which is equivalent to equation (17), which characterizes the informa-
tional efficiency in the unconstrained economy. Thus, β = βu and xdi = xui . Moreover, for the aggregate demand
of specialists, we can write

X = X(φ, p) = Eξi [T (Xu(φ, p) + ξi; a(p), b(p))] ,

where Xu(φ, p) and ξi are characterized in proof of Proposition 1.

We now prove that for every p there exists unique φ = g(p) such that the market clears. Indeed, the
market clearing can be written as

X(φ, p) + xm(φ, p) = 1, where

xm(φ, p) = cm0 − cmp p+ cmφ φ. (21)

For a given p, aggregate specialists’ demand X(φ, p) is increasing in φ. Thus, there is at most one solution. At
least one solution exists by the Intermediate Value Theorem. The aggregate demand at +∞(−∞) is equal to
+∞(−∞), thus, at some intermediate point, the aggregate demand has to be equal to 1.

We now compute a closed-form expression for the aggregate demand of specialists X(φ, p). It can be split
into three parts. For a fraction π1 of specialists, the lower constraint a(p) will bind. They contribute π1(φ, p)a(p)
to the aggregate demand. Similarly, a fraction π3 of specialists for whom the upper constraint b(p) binds. They
contribute π3(φ, p)b(p). Finally a fraction π2 will be unconstrained. They contribute π2 · (Xu+E[ξi|(ξi+Xu) ∈
[a(p), b(p)]]). Using the standard results for the mean of truncated normal distribution, the last term can be
further simplified to

π2E[ξi|(ξi +Xu) ∈ [a(p), b(p)]] = σξ

(
Φ′
(
a(p)−Xu

σξ

)
− Φ′

(
b(p)−Xu

σξ

))
where Φ(·) and Φ′(·) stands for the cumulative distribution function (CDF) and probability density function
(PDF) of a standard normal distribution. Combining all of the terms we get

X(φ, p) = π1a(p) + π3b(p) + π2X
u + σξ

(
Φ′
(
a(p)−Xu

σξ

)
− Φ′

(
b(p)−Xu

σξ

))
. (22)

Now we determine the fractions π1, π2, and π3. The fraction of specialists constrained by the lower
constraint, π1, is given by

π1(p, φ) = P (xi < a(p)) = P (Xu(p, φ) + ξi < a(p)) = Φ

(
a(p)−Xu(p, φ)

σξ

)
(23)

The expressions for π2 and π3 can be derived analogously:

π3(φ, p) = 1− Φ

(
b(p)−Xu(p, φ)

σξ

)
, (24)

π2(φ, p) = 1− π1 − π3. (25)

Finally, we find the expression for the function g′(p). Differentiating the market-clearing condition implicitly,
we have

g′(p) = −
∂
∂p (X(p, φ) + xm(p))
∂
∂φ (X(p, φ) + xm(p))

. (26)
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For the numerator, we have

∂

∂p
(X(p, φ) + xm(p)) = π1a

′(p) + π3b
′(p)− π2cp − cmp .

For the denominator, we have
∂

∂φ
(X(p, φ) + xm(p)) = cmφ + π2cφ.

Substituting these expressions into (26) gives us the desired result.

A.3 Proof of Proposition 3

We start with the following lemma:

Lemma 2. The certainty equivalent CE1,i is given by (27).

Proof of Lemma 2. The date-1 certainty equivalent solves

− exp(−γCE1,i) = E[− exp(−γ(W0 + xi(v + θ − p) + eiθ))|Fi]

The certainty equivalent at time 1 can thus be written as

CE1,i = W0 + xi(E[v|Fi]− p)−
γ

2τv,i
x2
i −

γ

2τθ
(xi + ei)

2
.

where τ−1
v,i = var(v|Fi). Next, we note that

xui =
τi
γ

(E[v|Fi]− p− γeiτ−1
θ )⇒ E[v|Fi]− p =

γ

τi
xui +

γ

τθ
ei

where xui is her demand in the unconstrained economy. Substituting this into the certainty equivalent, we get

CE1,i = − γ

2τi
(xui − xi)

2
+W0 +

γ

2τi
(xui )

2 − γ

2τθ
e2
i . (27)

Proof of Proposition 3. Step 1. Observing a signal si = v+ εi, with τε,i = t is informationally equivalent to
observing a stochastic process dXs = vds+ dBs, with X0 = 0, between s = 0 and s = t. Here, Bs is a standard
Brownian motion that is independent of all other random variables in the model.

The process Xs is Markovian, therefore the history {Xs}s∈[0,t] is informationally equivalent to {Xt},
which is, in turn, informationally equivalent to 1

tXt = v + 1
tBt. Since 1

tBt ∼ N(0, t−1), the conditional distri-
butions of 1

tXt and si are the same, which establishes the claim.

The above equivalence implies that the marginal values of information for a specialist who observes Xs,
s ∈ [0, t] and si are the same. The process Xs, however, is more convenient to work with, since we can utilize
the stochastic calculus techniques when computing MVI, as we do in the following step.

Step 2. MVI =
E[ 1

dtEt[dU1(Xt,ei,φ)]]

γE[U1(Xt,ei,φ)] , where U1(Xt) = E[− exp(−γW2)|Xt, ei, φ] is t = 1 expected utility

of a specialist and Et[·] is a shortcut for E[·|Xt, ei, φ]. Thus, computing MVI reduces to calculating the drift
1
dtEt[dU1(Xt, ei, φ)]] of the process U1(Xt).

It follows directly from the definition of MVI that it can be computed as MVI =
d
dtE[U1]

γE[U1] . Since

1
dtEt[dU1] is uniformly bounded by τi

2τ2
v,i
U1 (follows from step 3 below) and E

[
τi

2τ2
v,i
U1

]
< ∞ the Dominated

Convergence Theorem implies that we can interchange the expectation and differentiation; that is, d
dtE[U1] =

E
[
dU1

dt

]
. (By the law of iterated expectations, E

[
dU1

dt

]
= E

[
1
dtEt[dU1]

]
.)
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Step 3. The drift of the process U1(Xt)is given by

1

dt
Et[dU1(Xt)]] =

{
τi

2τ2
v,i
U1, if xui ∈ (a(p), b(p)) ,

0, otherwise.

We first consider the situation where agent i is unconstrained, that is, where {Xt, ei, φ} are such that
xui ∈ (a(p), b(p)). We proceed by noting first that

1

dt
Et[dU1(Xt, ei, φ)]] = −γ 1

dt
Et[d exp(−γCE1,i)]],

where in the unconstrained region

CE1,i =
τi
2γ

(
vi − p− γeiτ−1

θ

)2
+ terms that do not depend on t and Xt.

We have denoted

vi = E[v|Fi] =
Xt + β2 (τu + τz)φ+ βτuei

τv,i
,

τv,i = V ar[v|Fi] = t+ β2 (τu + τz) + τv.

We use Ito’s Lemma to compute30

de−γCE1,i(Xt) = −γe−γCE1,i(Xt)dCE1,i +
γ2

2
e−γCE1,i(Xt)dCE2

1,i. (28)

Differentiating CE1,i we get

dCE1,i =
dτi
2γ

(
vi − p− γeiτ−1

θ

)2
+
τi
γ

(
vi − p− γeiτ−1

θ

)
dvi +

τi
2γ

(dvi)
2
,

(dCE1,i)
2

=

(
τi
γ

(
vi − p− γeiτ−1

θ

))2

(dvi)
2
. (29)

We now differentiate vi and τi =
(

1
τv,i

+ 1
τθ

)−1

to get

dτi =

(
τi
τv,i

)2

dt, dvi =
dXt

τv,i
− dt

τv,i
vi, (dvi)

2
=

(
dBt
τv,i

)2

=
dt

τ2
v,i

.

We now compute Et
[
de−γCE1,i(Xt)

]
. Note that since Et[v] = vi and Et[dBt] = 0, we have Et[dvi] = 0.

Hence,

Et[dCE1,i] =
dτi
2γ

(
vi − p− γeiτ−1

θ

)2
+
τi
2γ

dt

τ2
v,i

. (30)

Substituting (29) and (30) into (28), we get

Et

[
de−γCE1,i(Xt)

]
= −e−γCE1

τi
2

dt

τ2
v,i

. (31)

30The function CE1,i(Xt) is not C2 in Xt, which makes the standard Ito rule non-applicable. However, CE1,i(Xt) is
convex, which allows us to apply the generalized Ito rule for convex functions (see, e.g., Karatzsas and Shreve (1991),
Chapter 3.6.D). Moreover, since CE1,i is C1 in Xt, the local time terms in the generalized Ito rule disappear and we can
write the Ito’s Lemma in the usual way.
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We now consider the situation where agent i is constrained by lower bound, that is, where {Xt, ei, φ} are
such that xui < a(p). Then, U1 = Et[− exp(−γ(W2))] is a martingale (since W2 does not depend on Xt or
t). Therefore, its drift is zero. Proceeding analogously for the case {Xt, ei, φ} are such that xui > b(p) and
combining the results, we obtain the desired result.

Step 4. The marginal value of information is given by

MVI =
τi

2τ2
v,i

E
[
e−γCE1,iI(xui = xi)

]
E [e−γCE1,i ]

. (32)

The claim follows immediately from step 3.

Step 5. The marginal value of information decreases when individual specialist’s constraints become
tighter, holding everything else fixed.

Consider first the nominator in (32),

Uu0 = E
[
−e−γCE1I(xui = xi)

]
= E

[
−e−

(
W0+ γ

2τi
(xui )2− γ

2τθ
e2i

)
I(xui = xi)

]
.

As constraints tighten, only the I(xui = xi) changes: the price function is unaffected because constraints are
changing for only one, measure-zero specialist; therefore the desired demands xui are the same. The term Uu0
increases (becomes less negative) as constraints become tighter: recall that specialists get negative utility; as
constraints become tighter, they get it in fewer states of the world. The denominator U0 = − exp(−γCE1,i)
decreases (becomes more negative), as with constraints, the certainty equivalent CE1,i in all states weakly
decreases. Thus, the ratio decreases as constraints become tighter.

A.4 Proof of Proposition 4

Proof. (Proposition 4) The existence and uniqueness of financial market equilibrium follows from Proposition
2. We now derive the formula for m+ margin. It solves

PrQ
(
p− f > m+|p

)
= 1− α.

Lemma 9 (in online appendix) implies that p− f given p is distributed normally with mean zero and variance
V ar[f |p] under risk-neutral measure. Therefore, one can write

PrQ
(
p− f > m+|p

)
= PrQ

(
p− f√
V ar[f |p]

>
m+√
V ar[f |p]

|p

)

= 1− Φ

(
m+√
V ar[f |p]

)

Analogous argument is true for m− margin. Therefore, the margins are given by

m+ = m− =
Φ−1(α)√
V ar[f |p]

,

where V ar[f |p]−1 = 1
τv+β2τz

+ 1
τθ
. As informational efficiency (β) decreases, margins increase. This implies that

the constraint a(p) = − W0

m+(p) decreases and the constraint b(p) = W0

m−(p) increases. This implies that constraints

tighten as informational efficiency decreases.
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We now prove that ∂2m
∂α∂β < 0. Differentiating (9), we get that

∂m

∂τε
=
∂m

∂β

∂β

∂τε
= − Φ−1(α)

(τv + β2τz)
2
√

(τv + β2τz)
−1

+ τ−1
θ

∂β

∂τε︸︷︷︸
>0, does not depend on α

. (33)

Differentiating (33) with respect to α we get

∂2m

∂α∂τε
= − 1

(τv + β2τz)
2
√

(τv + β2τz)
−1

+ τ−1
θ

∂β

∂τε︸︷︷︸
>0

∂Φ−1(α)

∂α︸ ︷︷ ︸
>0

< 0.

A.5 Proof of Proposition 5.

Proof of Proposition 5.

Step 1. In a stable equilibrium, τ∗ε and equilibrium informational efficiency β decrease when W0 drops

and/or margin m increases for all specialists for all W0 < Ŵ 1. We prove that in a stable equilibrium,
dτ∗ε
dW0

> 0.

The claims for m+ and m− can be proved analogously. We take the threshold Ŵ 1 to be minimum between the
thresholds in Lemma 6 and Lemma 3 so that both Lemmas hold.

Given that other specialists choose precision τ∗ε , it is optimal for a specialist i to choose τεi such that

C ′(τεi) =MVI(τεi , τ
∗
ε ,W0) and (34)

C ′′(τεi)−MVI1(τεi , τ
∗
ε ,W0) > 0.

The first (second) equation above corresponds to the first (second) order condition in specialist i’s optimization
problem and MVIk(·, ·, ·) denotes the derivative of MVI(·, ·, ·) > 0 with respect to its k-th argument. Note
that the second-order condition holds by Lemma 6 below. Differentiating (34) implicitly, we get

τ ′εi(τ
∗
ε ) =

MVI2(τεi , τ
∗
ε ,W0)

C ′′(τεi)−MVI1(τεi , τ
∗
ε ,W0)

. (35)

In a symmetric equilibrium τεi = τ∗ε , therefore

C ′(τ∗ε ) =MVI(τ∗ε , τ
∗
ε ,W0) and

C ′′(τ∗ε )−MVI1(τ∗ε , τ
∗
ε ,W0) > 0.

Moreover, since in a stable equilibrium |τ ′εi(τ
∗
ε )|< 1, from (35) we also have

C ′′(τ∗ε )−MVI1(τ∗ε , τ
∗
ε ,W0)−MVI2(τ∗ε , τ

∗
ε ,W0) > 0. (36)

To calculate
dτ∗ε
dW0

, we differentiate C ′(τ∗ε (W0)) =MVI(τ∗ε (W0), τ∗ε (W0);W0) with respect to W0 to get

dτ∗ε
dW0

=
MVI3(τ∗ε , τ

∗
ε ,W0)

C ′′(τ∗ε )−MVI1(τ∗ε , τ
∗
ε ,W0)−MVI2(τ∗ε , τ

∗
ε ,W0)

.

It follows from Lemma 3 below that MVI3(τ∗ε , τ
∗
ε ,W0) < 0. Combining it with (36), we get

dτ∗ε
dW0

> 0. To see

that dβ
dW0

> 0, note that β satisfies equation (17) and β increases as specialists acquire more information.

Step 2. There exists at least one stable equilibrium.
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It suffices to prove that f(τε) ≡ C ′(τε) −MVI(τε, τε,W0) crosses zero from below at least once for
τε ∈ [τε,∞). Note that f(τε) < 0. For sufficiently high τε it becomes positive: this is because C ′(τε) is increasing
in τε, whereasMVI(τε, τε,W0) is bounded above by τi

2τ2
v,iγ

, which is decreasing in τε. By the Intermediate Value

Theorem, f(τε), has to cross zero from below at least once.

Lemma 3. There exists Ŵ 1 such that for all W0 < Ŵ 1, we have ∂
∂m+MVI (τεi , τε;m

+,m−,W0) < 0,
∂

∂m−MVI (τεi , τε;m
+,m−,W0) < 0 and ∂

∂W0
MVI (τεi , τε;m

+,m−,W0) > 0.

Proof of Lemma 3.

We prove the statement for W0. The proofs of statements for m+ and m− are analogous and are omitted
for brevity.

Step 1. We prove that

lim
W0→0

∂

∂W0
MVI

(
τεi , τε;m

+,m−,W0

)
> 0. (37)

We write

lim
W0→0

∂

∂W0
MVI

(
τεi , τε;m

+,m−,W0

)
=

τi
2τ2
v,iγ

lim
W0→0

(
∂

∂W0
Uu0

U0
−
Uu0

∂
∂W0

U0

U2
0

)
.

Clearly, limW0→0
∂

∂W0
U0 < ∞ and limW0→0 U

u
0 = 0. Lemma 4 below proves that limW0→0

∂
∂W0

Uu0
U0

> 0.
The statement of this step then follows.

Step 2. There exists Ŵ 1 such that for all 0 < W0 < Ŵ 1, ∂
∂W0
MVI (τεi , τε;m

+,m−,W0) > 0.

Denote the limit in (37) by λ. By epsilon-delta definition of a limit (see, e.g., Kolmogorov and
Fomin (1975)) it follows that for any ε > 0 there exists δ > 0 such that for all W0: |W0|< δ, we have∣∣∣ ∂
∂W0
MVI (τεi , τε;m

+,m−,W0)− λ
∣∣∣ < ε. Taking ε = ψ we get that for all W0 such that 0 < W0 < δ ,

∂
∂W0
MVI (τεi , τε;m

+,m−,W0) > 0. Thus, the desired statement holds if we take Ŵ 1 = δ.

Lemma 4. limW0→0

∂
∂W0

Uu0
U0

> 0.

Proof of Lemma 4.

We first compute
∂(−Uu0 )
∂W0

as follows:

∂ (−Uu0 )

∂W0
=

∂

∂W0
E
[
e−γCE1,iI

(
xui ∈

[
−W0/m

−;W0/m
+
])]

= (38)

= E

[
e−γCE1,i

(
1

m+
δ
(
xui −W0/m

+
)

+
1

m−
δ
(
xui +W0/m

+
))]

(39)

+ E

[
∂

∂W0

(
e−γCE1,i

)
I
(
xui ∈

[
−W0/m

−;W0/m
+
])]

, (40)

where δ(·) denotes Dirac’s delta function. For the expression in (39) we have

lim
W0→0

E
[
e−γCE1,i

(
δ
(
xui −W0/m

+
)

+ δ
(
xui +W0/m

−))] =

(
1

m+
+

1

m−

)
E
[
e−γCE1,iδ (xui )

]
> 0.

We now consider the term in (40) and prove that its limit is zero, as W0 → 0. Note that in the unconstrained
region,

CE1,i = W0 +
γ

2τi
(xui )

2 − γ

2τθ
e2
i =⇒ ∂CE1,i

∂W0
= 1 +

γ

τi
xui

∂xui
∂W0

.
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It then follows that ∣∣∣∣∂CE1,i

∂W0

∣∣∣∣ < 1 +
γ

τi
A

∣∣∣∣ ∂xui∂W0

∣∣∣∣ , (41)

where we have denoted

A = max

(
W0

m−
,
W0

m+

)
. (42)

We show in Lemma 5 below that ∣∣∣∣ ∂xui∂W0

∣∣∣∣ < cp
cmp min(m+,m−)

. (43)

We can write now∣∣∣∣E [ ∂

∂W0

(
e−γCE1,i

)
I
(
xui ∈

[
−W0

m−
;
W0

m+

])]∣∣∣∣ < E

[
γe−γCE1,i

∣∣∣∣∂CE1,i

∂W0

∣∣∣∣ I(xui ∈ [−W0

m−
;
W0

m+

])]
< γE

[
e−γCE1,i

(
1 +

γ

τi
A

cp
cmp m

+

)
I
(
xui ∈

[
W0

m−
;
W0

m+

])]
= γ

(
1 +

γ

τi
A

cp
cmp m

+

)
E

[
e−γCE1,iI

(
xui ∈

[
−W0

m−
;
W0

m+

])]
.

Since limW0→0E
[
e−γCE1,iI

(
xui ∈

[
−W0

m− ; W0

m+

])]
= 0, the statement follows.

Lemma 5.
∣∣∣ ∂xui∂W0

∣∣∣ < cp
cmp min(m+,m−) .

Proof of Lemma 5. The unconstrained demand is given by

xui = cφφ− cpl(φ;W0) + ξi

and depends on W0 only through l(φ,W0) ≡ g−1(φ) (i.e., the inverse of g(p) for a given W0). Therefore

∂xui
∂W0

= −cp
∂l(φ;W0)

∂W0
.

The inverse of g(p), l(φ) solves
Xagg(l(φ), φ;W0) = 1.

We thus have that

Xagg
W0

(l(φ;W0), φ;W0) +Xagg
p (l(φ;W0), φ;W0)

∂l(φ;W0)

∂W0
= 0.

Computing the derivatives of aggregate demand and expressing ∂l(φ;W0)
∂W0

yields

∂l(φ;W0)

∂W0
=

(π3/m
+ − π1/m

−)

cmp + π2cp
.

It is clear from above that ∣∣∣∣∂l(φ;W0)

∂W0

∣∣∣∣ < 1

cmp min(m+,m−)
.

The statement follows.

Lemma 6. There exists a threshold Ŵ 1 such that for all W0 ∈ (0, Ŵ 1) we have
∂MVI(τεi ,τε;W0)

∂τε,i
−C ′′ (τε,i) < 0.

Proof of Lemma 6. We know that

MVI (τε.i, τε;W0) =
τi

2τ2
v,iγ

Uu0
U0

.
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Hence,

∂MVI (τεi , τε;W0)

∂τε,i
=
Uu0
U0

∂

∂τε,i

(
τi

2τ2
v,iγ

)
− τi

2τ2
v,iγ

Uu0
U2

0

∂U0

∂τε,i
+

τi
2τ2
v,iγ

1

U0

∂Uu0
∂τε,i

.

We prove below that

lim
W0→0

∂MVI (τεi , τε;W0)

∂τε,i
= 0.

First, it is clear that

lim
W0→0

Uu0
U0︸︷︷︸
→0

∂

∂τε,i

(
τi

2τ2
v,iγ

)
︸ ︷︷ ︸

<∞

= 0.

We then proceed in three steps. In step 1 we show that limW0→0
∂U0

∂τε,i
= 0. In step 2 we show that

limW0→0
∂Uu0
∂τε,i

= 0. In step 3 we combine these results to prove the statement of the proposition.

Step 1. limW0→0
∂U0

∂τε,i
= 0. Recall that

CE1,i = W0 +
γ

2τi
(xui )

2 − γ

2τθ
e2
i −

γ

2τi
(xui − xi)

2
.

Hence,

∂CE1,i

∂τε,i
= 1 +

γ

τi
xui

∂xui
∂τε,i

− γ

τi
(xui − xi)

(
∂xui
∂τε,i

− ∂xi
∂τε,i

)
+
γ

2

(
(xui )

2 − (xui − xi)
2
) ∂

∂τε,i

(
1

τi

)
= 1 +

γ

τi
xi
∂xui
∂τε,i

+
γ

τi
(xui − xi)

∂xi
∂τε,i

+
γ

2

(
(xui )

2 − (xui − xi)
2
) ∂

∂τε,i

(
1

τi

)
. (44)

Note that

lim
W0→0

xi︸︷︷︸
→0

∂xui
∂τε,i︸ ︷︷ ︸
<∞

= 0.

Consider xui > xi. For the third term in (44), γ
τi

(xui − xi) dxi
dτε,i

= 0 (recall that xi = W0/m in that case). A

similar argument shows that this term goes to 0 for xui < xi. For xui = xi, this term is zero. Thus,

lim
W0→0

γ

τi
(xui − xi)

dxi
dτε,i

= 0.

Since

lim
W0→0

(xui )
2 −

xui − xi︸︷︷︸
→0

2
 = 0,

we have

lim
W0→0

γ

2

(
(xui )

2 − (xui − xi)
2
)

︸ ︷︷ ︸
→0

d

dτε,i

(
1

τi

)
︸ ︷︷ ︸

<∞

= 0.

Thus,

lim
W0→0

∂U0

∂τε,i
= 0.

Step 2. limW0→0
∂Uu0
∂τε,i

= 0.

46



We write the desired demand xui as follows:

xui = E[xui |v, z, ui] +
√
V ar[xui |v, z, ui]ε

n
i ,

where εni = τ
−1/2
ε,i εi and εni |{v, z, ui} is distributed normally with zero mean and unit variance. Denote

r ≡ E[xui |v, z, ui]√
V ar[xui |v, z, ui]

, and q ≡ 1

m (τε)
√
V ar[xui |v, z, ui]

. (45)

Following the steps of Proposition 1, from the expression for unconstrained demand one can derive√
V ar[xui |v, z, ui] =

τi
√
τε,i

γτv,i

and similarly, for r,

r =
E[xi|v, z, ui]√
V ar[xi|v, z, ui]

(46)

=
τi

γ
√
V ar[xi|v, z, ui]

(
τε,iv + β2 (τu + τz)φ+ βτuei

τv,i
− p− γeiτ−1

θ

)
. (47)

We write

lim
W0→0

d

dτε,i
Uu0 (τεi , τε) = (48)

= − lim
W0→0

∫
γe−γCE1,i

∂CE1,i

∂τε,i
I (εni ∈ [−qW0 − r; qW0 − r]) dFvdFzdFuidFεni + (49)

+ lim
W0→0

W0

∫
∂q

∂τε,i

(
e−γCE1,i (δ (εni + qW0 + r) + δ (εni − qW0 + r))

)
dFvdFzdFuidFεni + (50)

− lim
W0→0

∫
∂r

∂τε,i

(
e−γCE1,i (δ (εni − qW0 + r)− δ (εni + qW0 + r))

)
dFvdFzdFuidFεni . (51)

The limit in (49) is

lim
W0→0

∫
γe−γCE1,i

∂CE1,i

∂τε,i
I (εni ∈ [−qW0 − r; qW0 − r]) dFvdFzdFuidFεni = 0.

The limit in (50) is simply

lim
W0→0

W0

∫
∂q

∂τε,i

(
e−γCE1,i (δ (εni + qW0 + r) + δ (εni − qW0 + r))

)
dFvdFzdFuidFεni =

lim
W0→0

2W0

∫
e−γCE1,iδ (εni + r) dFvdFzdFuidFεni = 0.

For (51), we write

lim
W0→0

∫
∂r

∂τε,i

(
e−γCE1,i (δ (εni − qW0 + r)− δ (εni + qW0 + r))

)
dFvdFzdFuidFεni = 0.

Step 3. There exists threshold Ŵ such that for all W0 ∈ (0, Ŵ ), we have
∂MVI(τεi ,τε;W0)

∂τε,i
− C ′′ (τε,i) < 0. By

the previous steps of the proposition,

lim
W0→0

∂MVI(τεi , τε;W0)

∂τε,i
= 0.
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Given the strict convexity of the cost function,

lim
W0→0

(
∂MVI(τεi , τε;W0)

∂τε,i
− C ′′ (τε,i)

)
< 0.

Denote this limit λ < 0 and write epsilon-delta definition of a limit (see, e.g., Kolmogorov and Fomin

(1975)): for any ε > 0, there exists δ > 0 such that for all 0 < W0 < δ, we have
∣∣∣∂MVI(τεi ,τε;W0)

∂τε,i
− C ′′ (τε,i)− λ

∣∣∣ <
ε. Take ε = λ. For such ε there exists δ > 0 such that for all W0 such that 0 < W0 < δ, we have
∂MVI(τεi ,τε;W0)

∂τε,i
− C ′′ (τε,i) < 0. Therefore, the desired statement holds if we take Ŵ 1 = δ.

A.6 Proof of Proposition 6

Proof of Proposition 6.

Denote the marginal value of information and time-0 certainty equivalent when a specialist i chooses his
signal precision τε.i, other specislists choose precision τε, and a financier has set the margins m+ = m− = m for
a specialist of interest as MVI(τε.i, τε,m) and CEi,0(τε.i, τε,m) respectively.

In equilibrium,

m = m(τε) = Φ−1(α)
√

(τv + β2(τε)τz)−1 + τ−1
θ .

By Proposition 2, the financial market equilibrium (at t = 1) exists and is unique. Similarly to the proof
of Proposition 5, at least one stable full equilibrium exists provided that (i) MVI(τε, τε,m(τε)) crosses C(τε)
from above and (ii) the point of intersection is indeed a maximum. We prove these statements in the three steps
below.

Step 1. There exists at least one τε = τ∗ε such that MVI(τε, τε,m(τε)) crosses C(τε) from above at
τε = τ∗ε .

It suffices to prove that f(τε) ≡ C ′(τε) −MVI(τε, τε,m(τε)) crosses zero from below at least once for
τε ∈ (τε,∞). Note that f(τε) < 0. For sufficiently high τε, it becomes positive: this is because C ′(τε) is increasing
in τε, whereasMVI(τε, τε,W0) is bounded above by τi

2τ2
v,iγ

, which is decreasing in τε. By the Intermediate Value

Theorem, f(τε) has to cross zero from below at least once.

Step 2. Denote τ̂ε the t that solves τi
2τ2
v,iγ

∣∣∣
τε,i=t,τε=τ∗ε

= C ′(t). There are no maxima of

CEi,0(τε.i, τ
∗
ε ,m(τ∗ε ))− C(τε,i), (52)

for τε,i > τ̂ε.

Indeed,MVI(τε,i, τ
∗
ε ,m(τ∗ε )) < τi

2τ2
v,iγ

∣∣∣
τε=τ∗ε

< C ′(τε,i), for τε,i > τ̂ε. This implies that CEi,0(τε.i, τ
∗
ε ,m(τ∗ε ))−

C(τε,i) decreases for τε,i > τ̂ε and thus has no maxima in that region.

Denote

C = max
τε,i∈[τε,τ̂ε]

∂MVI(τε,i, τ
∗
ε ,m(τ∗ε ))

∂τε,i
.

Such maximum exists by the Weierstrass extreme value theorem.

Step 3. If C ′′(τε,i) > C for τε,i ∈
[
τε, τ̂ε

]
then the function (52) attains a maximum at τε,i = τ∗ε .

Condition C ′′(τε,i) > C for τε,i ∈
[
τε, τ̂ε

]
implies that the investor i’s information choice problem is

convex on
[
τε, τ̂ε

]
. Then τ∗ε is a maximum of (52) on

[
τε, τ̂ε

]
. By step 2, there are no maxima on (τε,∞). Thus,

τ∗ε is a maximum of (52) on [τε,∞).
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A.7 Proof of Proposition 7

Proof of Proposition 7. The proof follows closely the proof of Proposition 5.

Step 1. In a stable equilibrium, when W0 drops, τ∗ε and β decrease, whereas margin m increases for

all specialists for all W0 < Ŵ 2. We prove that in a stable equilibrium,
dτ∗ε
dW0

> 0. The claims for β and

m = m+ = m− follow because these are monotone functions of τ∗ε .

Given that other specialists choose precision τ∗ε , it is optimal for a specialist i to choose τεi such that:

C ′(τεi) =MVI(τεi , τ
∗
ε ,m(τ∗ε ),W0), (53)

C ′′(τεi)−MVI1(τεi , τ
∗
ε ,m(τ∗ε ),W0) > 0.

The first (second) equation above corresponds to the first (second) order condition in specialist i’s optimization
problem andMVIk(·, ·, ·, ·) denotes the derivative ofMVI(·, ·, ·, ·) > 0 with respect to its k-th argument. Note
that the second-order condition holds since Assumption 3 holds. Differentiating (53) implicitly, we get

τ ′εi(τ
∗
ε ) =

MVI2(τεi , τ
∗
ε ,m(τ∗ε ),W0) +MVI3(τεi , τ

∗
ε ,m(τ∗ε )W0)m′(τ∗ε )

C ′′(τεi)−MVI1(τεi , τ
∗
ε ,W0)

. (54)

In a symmetric equilibrium τεi = τ∗ε , therefore

C ′(τ∗ε ) =MVI(τ∗ε , τ
∗
ε ,m(τ∗ε ),W0),

C ′′(τ∗ε )−MVI1(τ∗ε , τ
∗
ε ,m(τ∗ε ),W0) > 0.

Moreover, since in a stable equilibrium |τ ′εi(τ
∗
ε )|< 1, from (54) we also have

C′′(τ∗ε )−MVI1(τ∗ε , τ
∗
ε ,m(τ∗ε ),W0)−MVI2(τ∗ε , τ

∗
ε ,m(τ∗ε ),W0)−MVI3(τ∗ε , τ

∗
ε ,m(τ∗ε ),W0)m′(τ∗ε ) > 0. (55)

To calculate
dτ∗ε
dW0

, we differentiate C ′(τ∗ε (W0)) = MVI(τ∗ε (W0), τ∗ε (W0),m(τ∗ε (W0));W0) with respect to W0

to get

dτ∗ε
dW0

=
MVI4(τ∗ε , τ

∗
ε ,m(τ∗ε ),W0)

C′′(τ∗ε )−MVI1(τ∗ε , τ∗ε ,m(τ∗ε ),W0)−MVI2(τ∗ε , τ∗ε ,m(τ∗ε ),W0)−MVI3(τ∗ε , τ∗ε ,m(τ∗ε ),W0)m′(τ∗ε )
.

It follows from Lemma 3 that MVI4(τ∗ε , τ
∗
ε ,m(τ∗ε ),W0) < 0. Combining it with (55) we get

dτ∗ε
dW0

> 0.

Step 2. There exists at least one stable equilibrium.

It suffices to prove that f(τε) ≡ C ′(τε) −MVI(τε, τε,m(τ∗ε ),W0) crosses zero from below at least once
for τε ∈ [τε,∞). Note that f(τε) < 0. For sufficiently high τε, it becomes positive; this is because C ′(τε) is
increasing in τε, whereas MVI(τε, τε,m(τε),W0) is bounded above by τi

2τ2
v,iγ

, which is decreasing in τε. By the

Intermediate Value Theorem, f(τε) has to cross zero from below at least once.

A.8 Proof of Proposition 8

Proof of Proposition 8. We know that

MVI (τεi , τε;W0) =
τi

2τ2
v,iγ

Uu0
U0

,

where Uu0 (τεi , τε) = E[−e−γCE1,iIxui =xi ] and U0(τεi , τε) = E[−e−γCE1,i ]. Since

∂ logMVI
∂τε

=
1

MVI
∂MVI
∂τε
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and MVI > 0, we may instead prove that
∂ logMVI(τεi ,τε;W0)

∂τε
> 0. We write

∂ logMVI
∂τε

=
∂

∂τε
log

(
τi

2γτ2
v,i

)
+
∂ log(−Uu0 )

∂τε
− ∂ log(−U0)

∂τε
.

We then proceed in three steps. In step 1, we show limW0→0
∂ log(−U0)

∂τε
= 0. In step 2, we derive the

closed-form expression for limW0→0
∂ log(−Uu0 )

∂τε
. In step 3, we combine these results to prove the proposition.

Step 1. limW0→0
∂ log(−U0)

∂τε
= 0.

Recall that
CE1,i = W0 +

γ

2τi
(xui )

2 − γ

2τθ
e2
i −

γ

2τi
(xui − xi)

2
.

Hence,

∂CE1,i

∂τε
= 1 +

γ

τi
xui
∂xui
∂τε
− γ

τi
(xui − xi)

(
∂xui
∂τε
− ∂xi
∂τε

)
+
γ

2

(
(xui )

2 − (xui − xi)
2
) ∂

∂τε

(
1

τi

)
= 1 +

γ

τi
xi
∂xui
∂τε

+
γ

τi
(xui − xi)

∂xi
∂τε

+
γ

2

(
(xui )

2 − (xui − xi)
2
) ∂

∂τε

(
1

τi

)
. (56)

Note that

lim
W0→0

xi︸︷︷︸
→0

∂xui
∂τε︸︷︷︸
<∞

= 0.

Consider xui > xi. For the third term in (56), γ
τi

(xui − xi) dxidτε
, we have (recall that xi = W0/m (τε) in that case)∣∣∣∣ γτi (xui − xi)

dxi
dτε

∣∣∣∣ < γ

τi
|xui |

∣∣∣∣dxidτε

∣∣∣∣
=
γ

τi
|xui |︸︷︷︸
<∞

W0

m2
m′(τε)

→ 0 as W0 → 0.

A similar argument shows that this term goes to 0 for xui < xi. For xui = xi, this term is zero. Thus,

lim
W0→0

γ

τi
(xui − xi)

dxi
dτε

= 0.

Since

lim
W0→0

(xui )
2 −

xui − xi︸︷︷︸
→0

2
 = 0,

we have

lim
W0→0

γ

2

(
(xui )

2 − (xui − xi)
2
)

︸ ︷︷ ︸
→0

d

dτε

(
1

τi

)
︸ ︷︷ ︸

<∞

= 0.

Thus,

lim
W0→0

d logU0

dτε
= 0.

Step 2. limW0→0
∂ log(−Uu0 )

∂τε
= ∂ log(qψ)

∂τε
, where q is given by (45) and ψ is given by (66).
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We now consider
∂ log (−Uu0 )

∂τε
=

1

−Uu0
∂ (−Uu0 )

∂τε
.

We write the desired demand xui as follows:

xui = E[xui |v, z, ui] +
√
V ar[xui |v, z, ui]ε

n
i ,

where εni = τ
−1/2
ε,i εi and εni |{v, z, ui} is distributed normally with zero mean and unit variance. Denote

r ≡ E[xui |v, z, ui]√
V ar[xui |v, z, ui]

, and q ≡ 1

m (τε)
√
V ar[xui |v, z, ui]

. (57)

Following the steps of Proposition 1, from the expression for unconstrained demand one can derive√
V ar[xui |v, z, ui] =

τi
√
τε,i

γτv,i
,

and similarly, for r,

r =
E[xi|v, z, ui]√
V ar[xi|v, z, ui]

(58)

=
τi

γ
√
V ar[xi|v, z, ui]

(
τε,iv + β2 (τu + τz)φ+ βτuei

τv,i
− p− γeiτ−1

θ

)
. (59)

Multiply Uu0 by 1
2qW0

and write

lim
W0→0

− Uu0
2qW0

= lim
W0→0

∫
e−γCE1,i

I (εni ∈ [−qW0 − r; qW0 − r])
2qW0

dFvdFzdFuidFεni

=

∫
e−γCE1,iδ (εni + r) dFvdFzdFuidFεni

=
1√
2π

∫
exp

(
γ2

2τθ
e2
i −

r2

2

)
dFvdFzdFui

≡ ψ.

In the above, δ(·) denotes Dirac’s delta function. Note that ψ can be computed in closed form, which we do in
Lemma 7 below.

Similarly, multiply
d(−Uu0 )
dτε

by 1
2qW0

and write

lim
W0→0

−1

2qW0

d

dτε
Uu0 (τεi , τε) = (60)

= − lim
W0→0

∫
γe−γCE1,i

∂CE1,i

∂τε

I (εni ∈ [−qW0 − r; qW0 − r])
2qW0

dFvdFzdFuidFεni + (61)

+ lim
W0→0

∫
1

2q

∂q

∂τε

(
e−γCE1,i (δ (εni + qW0 + r) + δ (εni − qW0 + r))

)
dFvdFzdFuidFεni + (62)

− lim
W0→0

∫
1

2qW0

∂r

∂τε

(
e−γCE1,i (δ (εni − qW0 + r)− δ (εni + qW0 + r))

)
dFvdFzdFuidFεni . (63)
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The limit in (61) is

lim
W0→0

∫
γe−γCE1,i

∂CE1,i

∂τε

I (εni ∈ [−qW0 − r; qW0 − r])
2qW0

dFvdFzdFuidFεni =∫
γe−γCE1,i

dCE1,i

dτε
δ (εni + r) dFvdFzdFuidFεni .

Note that in the unconstrained region

∂CE1,i

dτε
=

d

∂τε

(
γ

2τi
(xui )

2

)
=
γ (xui )

2

2

d

dτε

(
1

τi

)
︸ ︷︷ ︸

<∞

+
γ

τi
xui

d

dτε
(xui )︸ ︷︷ ︸

<∞

.

Once we substitute εni = −r, the desired demand xui becomes zero, as does
dCE1,i

dτε
. Thus,∫

γe−γCE1,i
dCE1,i

dτε
δ (εni + r) dFvdFzdFuidFεni = 0.

The limit in (62) is simply

lim
W0→0

∫
1

2q

∂q

∂τε

(
e−γCE1,i (δ (εni + qW0 + r) + δ (εni − qW0 + r))

)
dFvdFzdFuidFεni =

∂ log q

∂τε

∫
e−γCE1,iδ (εni + r) dFvdFzdFuidFεni =

∂ log q

∂τε
ψ.

For (63), we write

lim
W0→0

∫
1

2qW0

∂r

∂τε

(
e−γCE1,i (δ (εni − qW0 + r)− δ (εni + qW0 + r))

)
dFvdFzdFuidFεni

= lim
W0→0

∫
1

2qW0

∂r

∂τε

(
e−γCE1,ifεni

∣∣εni =qW0−r
εni =−qW0−r

)
dFvdFzdFui

=

∫
∂r

∂τε

∂

∂εni

(
e−γCE1,ifεni

)∣∣∣∣
εni =−r

dFvdFzdFui .

Direct calculation yields

∂

∂εni

(
e−γCE1,ifεni

)∣∣∣∣
εni =−r

=
1√
2π

exp

(
γ2

2τθ
e2
i −

r2

2

)
r.

The limit in (63) can then be written as

lim
W0→0

∫
1

2qW0

∂r

∂τε

(
e−γCE1,i (δ (εni − qW0 + r)− δ (εni + qW0 + r))

)
dFvdFzdFuidFεni

=
1√
2π

∫
r
∂r

∂τε
exp

(
γ2

2τθ
e2
i −

r2

2

)
dFvdFzdFui

=
−1√
2π

∂

∂τε

∫
exp

(
γ2

2τθ
e2
i −

r2

2

)
dFvdFzdFui

= − ∂ψ
∂τε

.
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Combining all the intermediary results of this step, we get

lim
W0→0

∂ log (−Uu0 )

∂τε
=
∂ log q

∂τε
+
∂ logψ

∂τε
.

Step 3. Suppose that the parameters of the model other than W0 are such that

∂ log(qψ)

∂τε
+

∂

∂τε
log

(
τi

2γτ2
v,i

)
> 0, (C1)

where r is defined in (57) and ψ is given by (66) Then there exists threshold Ŵ 3 such that for all W0 ∈ (0, Ŵ 3),

we have
∂MVI(τεi ,τε;W0)

∂τε
> 0.

By the previous steps of the proposition, if the condition (C1) holds, then the limit

lim
W0→0

∂ logMVI(τεi , τε;W0)

∂τε
> 0.

Denote this limit λ > 0 and write the epsilon-delta definition of a limit (see, e.g., Kolmogorov and Fomin (1975)):

for any ε > 0, there exists δ > 0 such that for all 0 < W0 < δ, we have
∣∣∣∂ logMVI(τεi ,τε;W0)

∂τε
− λ
∣∣∣ < ε. Take ε = λ.

For such ε, there exists δ > 0 such that for all W0 such that 0 < W0 < δ, we have
∂ logMVI(τεi ,τε;W0)

∂τε
> 0. For

such values of W0, we also have
∂MVI(τεi ,τε;W0)

∂τε
> 0 (since

∂ logMVI(τεi ,τε;W0)

∂τε
= 1
MVI

∂MVI
∂τε

and MVI > 0).

Therefore, the desired statement holds if we take Ŵ 3 = δ.

Lemma 7. A closed-form expression for ψ is given by (66).

Proof. We write ψ as follows:

ψ =
1√
2π
E

[
exp

(
γ2

2τθ
e2
i −

r2

2

)]
. (64)

Note that r is given by (59). Moreover, in the limit as W0 → 0, we have p = E[v|φ]− γm
τm
. Thus, one can write

r = ρvv + ρzz + ρuui + ρ0,

where

ρv =
τi

γ
√
V ar[xi|v, z, ui]

(
τε,i + β2 (τu + τz)

τv,i
− β2τz
β2τz + τv

)
,

ρz =
τi

γ
√
V ar[xi|v, z, ui]

(
βτz

β2τz + τv
+
βτu − β (τu + τz)

τv,i
− γτ−1

θ

)
,

ρu =
τi

γ
√
V ar[xi|v, z, ui]

(
βτu
τv,i
− γτ−1

θ

)
, and

ρ0 =
τi

γ
√
V ar[xi|v, z, ui]

γm
τm

.

Then, ei and r are jointly normally distributed as follows:(
ei
r

)
∼ N

((
0
ρ0

)
,

(
ve cer
cer vr

))
, (65)

where we have introduced the notation ve, vr, and cer for, respectively, variance of ei, variance of r, and
covariance between ei and r.

It is easy to express them as follows:
ve = τ−1

z + τ−1
u ,
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vr = ρ2
vτ
−1
v + ρ2

zτ
−1
z + ρ2

uτ
−1
u , and

cer = ρzτ
−1
z + ρuτ

−1
u .

Substituting the density (65) and computing the expectation in (64), we get

ψ =

√
τθ√
2π

exp

(
ρ2

0(γ
2ve−τθ)

2γ2cer2+2(vr+1)(τθ−γ2ve)

)
√
γ2cer2 + (vr + 1) (τθ − γ2ve)

. (66)

A.9 Proof of Proposition 9

The fact that β falls when financiers j 6= i, j ∈ [0, 1] increase margins follows from Proposition 5. Given that β
falls, by (9), it is optimal for financier i to increase his margin.

A.10 Proof of Proposition 10

We split the proof into three parts, devoted to risk premium, volatility, and the Sharpe ratio, respectively.

A.10.1 Risk premium

The direct effect

The proof follows a sequence of steps. Consider the ODE for the function g(p)

g′(p) = h(p, g(p)) ≡
π2(p, g(p))cp + cmp
π2(p, g(p))cφ + cmφ

> 0, (67)

where π2(p, φ) = Φ
(
W0/m−Xu(p,φ)

σξ

)
− Φ

(
−W0/m−Xu(p,φ)

σξ

)
.

Step 1. The function h(p, φ) is an even function, that is, h(p, φ) = h(−p,−φ).

We prove that π2(p, φ) = π2(−p,−φ) from which the claim follows. Note that Xu(p, φ) = cφφ − cpp =
−Xu(−p,−φ). Then

π2(−p,−φ) = Φ

(
W0/m−Xu(−p,−φ)

σξ

)
− Φ

(
−W0/m−Xu(−p,−φ)

σξ

)
= Φ

(
− (−W0/m−Xu(p, φ))

σξ

)
− Φ

(
− (W0/m−Xu(p, φ))

σξ

)
= 1− Φ

(
−W0/m−Xu(p, φ)

σξ

)
−
(

1− Φ

(
W0/m−Xu(p, φ)

σξ

))
= Φ

(
W0/m−Xu(p, φ)

σξ

)
− Φ

(
−W0/m−Xu(p, φ)

σξ

)
.

Step 2. The solution to the ODE (67) with boundary condition g(0) = 0 is an odd function. That is,
g(p) + g(−p) = 0 ∀p.

We prove the statement by contradiction. Denote by p̂ the largest p such that for all p ≤ p̂, we have g(p)+g(−p) =
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0. Consider g(p̂+ dp) = g(p̂) + h (p̂, g (p̂)) dp. On the other hand,

g(−p̂− dp) = g(−p̂)− h (−p̂, g (−p̂)) dp
= −g(p̂)− h (−p̂,−g (p̂)) dp

= − (g(p̂) + h (p̂, g (p̂)) dp)

= −g(p̂+ dp),

which means that p̂ can be increased to p̂+ dp, which contradicts the fact that p̂ is the largest.

Step 3. The solution to the ODE (67) with boundary condition g(0) > 0 is such that g(p) + g(−p) > 0
∀p. The solution to the ODE (67) with boundary condition g(0) < 0 is such that g(p) + g(−p) < 0 ∀p.

We prove the first statement; the second is proved analogously. Denote the solution to the ODE (67) with a
bounday condition g(0) = 0 by g0(p). We have shown in the lemma above that g0(p) is odd.

Any solution to the ODE (67) with a boundary condition g(0) > 0 is a function g(p) that is always
above the function g0(p). Hence, g(p) + g(−p) > g0(p) + g0(−p) = 0.

Step 4. In equilibrium, g(0) > 0.

The aggregate demand of specialists is given by

X(p, φ) =− π1(p, φ)
W0

m
+ π3(p, φ)

W0

m
+ π2(p, φ)Xu(p, φ)+

σξ

(
Φ′
(
−W0/m−Xu(p, φ)

σξ

)
− Φ′

(
W0/m−Xu(p, φ)

σξ

))
.

It can be shown that X(0, 0) = 0. Denote the aggregate demand Xagg(p, φ) = X(p, φ) + cφφ − cpp. The value
g(0) is φ∗ such that Xagg(0, φ

∗) = 1. Since Xagg(0, 0) = 0 and ∂
∂φXagg(p, φ) = cmφ +π2cφ > 0, we have g(0) > 0.

Step 5. Suppose that f(x) is a positive even function and a function l(x) is such that l(x) + l(−x) < 0.
Then

∫∞
−∞ f(x)l(x)dx < 0.

Given symmetry, the integral can be written as∫ ∞
0

f(x) (l(x) + l(−x)) dx > 0.

Step 6. Xu(p, g(p)) +Xu(−p, g(−p)) < 0.

Xu(−p, g(−p)) = − (cpp+ cφg(−p)) < − (cpp− cφg(p)) = −Xu(p, g(p)).

Step 7. For any a > 0, the function k(x) = Φ(x+a)−Φ(x−a) decreases (increases) in x for x > 0(< 0).
Moreover, suppose that x+ y < 0 and x < 0, then k(x) < k(y).

By symmetry Φ(x+ a)−Φ(x− a) attains unique maximum at x = 0; hence, it decreases to the right of
it and increases to the left of it. The second claim follows from the symmetry of k(x).

Step 8. π2(p, g(p)) > π2(−p, g(−p)) for p such that Xu(p, g(p)) > 0. Vice versa, π2(p, g(p)) <
π2(−p, g(−p)) for p such that Xu(p, g(p)) < 0.

Consider the case Xu(p, g(p)) > 0. In that case, −Xu(−p, g(−p)) > Xu(p, g(p)) > 0 (Step 6)

π2(−p, g(−p)) = Φ

(
W0/m−Xu(−p, g(−p))

σξ

)
− Φ

(
−W0/m−Xu(−p, g(−p))

σξ

)
.
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Applying step 7, we get

π2(−p, g(−p)) < Φ

(
W0/m+Xu(p, g(p))

σξ

)
− Φ

(
−W0/m−Xu(p, g(p))

σξ

)
= π2(p, g(p))

Consider the case Xu(p, g(p)) < 0. In that case, Xu(p, g(p)) + Xu(−p, g(−p)) < 0 (step 6). Applying step 7
(second claim), we get

π2(−p, g(−p)) < Φ

(
W0/m+Xu(p, g(p))

σξ

)
− Φ

(
−W0/m−Xu(p, g(p))

σξ

)
= π2(p, g(p))

Step 9. π3(p, g(p))− π1(p, g(p)) + π3(−p, g(−p))− π1(−p, g(−p)) < 0.

One can write

π3(−p, g(−p))− π1(−p, g(−p)) = 1− Φ

(
W0/m−Xu(−p, g(−p))

σξ

)
− Φ

(
−W0/m−Xu(−p, g(−p))

σξ

)
= Φ

(
−W0/m+Xu(−p, g(−p))

σξ

)
− Φ

(
−W0/m−Xu(−p, g(−p))

σξ

)
< Φ

(
−W0/m−Xu(p, g(p))

σξ

)
− Φ

(
−W0/m+Xu(p, g(p))

σξ

)
= − (π3(p, g(p))− π1(p, g(p)) .

Step 10. ∂g(p;W )
∂W + ∂g(−p;W )

∂W < 0 and ∂l(φ;W )
∂W + ∂l(−φ;W )

∂W > 0.

Write
∂g(p;W )

∂W
= − (π3 − π1) /m

cmφ + π2cφ
≡ n(p)

d(p)
,

where
n(p) = − (π3(p, g(p))− π1(p, g(p)))

and
d(p) = cmφ + π2(p, g(p))cφ.

We have

n(p)

d(p)
+
n(−p)
d(−p)

=

>0︷ ︸︸ ︷
n(−p) + n(p)

d(−p)
−n(p)

(
d(p)− d(−p)
d(−p)d(p)

)
Note also that n(p) is < 0 (> 0) if and only if X(p, g(p)) > 0 (< 0), which, by step 9, implies that sign(n(p)) =
−sign(d(p)− d(−p)) . Therefore n(p) (d(p)− d(−p)) < 0. The second statement can be proven analogously.

Step 11. ∂
∂W0

rp < 0.

∂

∂W0
rp = − ∂

∂W0
E[p] = −

∫ ∞
0

∂

∂W0
(l(φ) + l(−φ))fφ(φ)dφ < 0.

The indirect effect

Step 1. The indirect effect is ∂rp
∂τε

dτε
dW0

is negative for W0 small enough, that is, limW0→0
∂rp
∂τε

dτε
dW0

< 0.
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The risk premium can be written as

rp =
V ar[f |p]
γm

(1− E[X]).

For ∂rp
∂τε

, we write

∂rp

∂τε
=

(1− E[X])

γm︸ ︷︷ ︸
→1/γm

∂V ar[f |p]
∂τε︸ ︷︷ ︸
<0

−V ar[f |p]
γm

∂E[X]

∂τε
.

It follows from Lemma 8 below that limW0→0
∂E[X]
∂τε

= 0, thus

lim
W0→0

∂rp

∂τε
=
∂rp

∂τε
=

1

γm

∂V ar[f |p]
∂τε︸ ︷︷ ︸
<0

.

The indirect effect is ∂rp
∂τε

dτε
dW0

. Given that for small enough W0, dτε
dW0

> 0, the claim of this step follows.

Step 2. There exists threshold Ŵ such that for all W0 ∈ (0, Ŵ ) we have that the indirect effect ∂rp
∂τε

dτε
dW0

is negative.

Denote the limit in the previous step λ < 0 and write the epsilon-delta definition of a limit (see, e.g.,
Kolmogorov and Fomin (1975)): for any ε > 0, there exists δ > 0 such that for all 0 < W0 < δ, we have∣∣∣∂rp∂τε

dτε
dW0
− λ
∣∣∣ < ε. Take ε = −λ. For such ε, there exists δ > 0 such that for all W0 such that 0 < W0 < δ, we

have ∂rp
∂τε

dτε
dW0

< 0. Therefore, the desired statement holds if we take Ŵ = δ.

Lemma 8. limW0→0
dX
dτε

= 0.

Proof. The aggregate demand of specialists changes with τε because: (1) constraints A(τε) = W/m(τε) change
(2) price function p(v, z;A(τε), τε) changes (both directly and through changes in constraints) and (3) τε affects
X directly. Correspondingly, we can write

X = X(v, z, p(v, z;A(τε), τε);A(τε), τε)

and
dX

dτε
=

(
∂X

∂A
+
∂X

∂p

∂p

∂A

)
A′(τε) +

∂X

∂p

∂p

∂τε
+
∂X(v, z)

∂τε
.

Consider

∂X(v, z)

∂τε
= E

[(
c′v(τε)v + c′z(τε)z + c′p(τε)p+ c′u(τε)ui + c′ε(τε)εi

)
I (xui ∈ [−A;A]) |v, z

]
.

From the above, it is clear that limW0→0
∂X(v,z)
∂τε

= 0. We now compute ∂p
∂τε

. Differentiating market clearing
condition implicitly, we get

∂p

∂τε
=

∂Xagg

∂τε

cmp + π2cp
=

→0︷︸︸︷
∂X

∂τε
+∂xm

∂τε

cmp + π2cp
.

It is clear that

lim
W0→0

∂p

∂τε
=
cmφ (τε)

′
(
v − 1

β(τε)
z
)

+
cmφ (τε)

β(τε)2 β
′(τε)z − cmp (τε)

′p

cmp
<∞.

On the other hand,

lim
W0→0

∂X

∂p
= lim
W0→0

π2cp = 0,

57



hence,

lim
W0→0

∂X

∂p

∂p

∂τε
= 0.

We now consider ∂X
∂A :

∂X

∂A
= π3 − π1 <∞,

On the other hand,

lim
W0→0

∂X

∂p
= lim
W0→0

π2cp = 0.

We finally compute ∂p
∂A . Differentiating the market-clearing condition implicitly, we get

∂p

∂A
=

π3 − π1

cmp + π2cp
⇒ lim

W→0

∂p

∂A
<∞.

Therefore,

lim
W0→0

(
∂X

∂A
+
∂X

∂p

∂p

∂A

)
A′(τε) = lim

W0→0

−
(
∂X

∂A
+
∂X

∂p

∂p

∂A

)
m(τε)

′

m(τε)2︸ ︷︷ ︸
<∞

W0

 = 0.

A.10.2 Volatility

The proof follows a sequence of steps.

Step 1. limW0→0
d
√
V

dW0
= limW0→0

∂
√
V

∂τε
dτε
dW0

< 0.

Using the law of total variance, we write

V ar(f − p) = V ar(f − p|p) + V ar (E [f − p|p]) .

For the first term, we already know that

d

dW0
V ar(f − p|p) =

d

dW0
V ar(f |p) < 0,

for W0 small enough. For the second term, we write

E [f − p|p] = γmV ar[f |p](1−X).

Therefore,
V ar (E [f − p|p]) = (γmV ar[f |p])2

V ar (X) .

Taking the derivative,

d

dW0
V ar (E [f − p|p]) =

d

dW0
(γmV ar[f |p])2︸ ︷︷ ︸

<0

V ar (1−X) + (γmV ar[f |p])2

(
d

dW0
V ar(X)

)
.

Since limW0→0 V ar(1−X) = 0, we have

lim
W0→0

d

dW0
(γmV ar[f |p])2

V ar (1−X) = 0.
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For d
dW0

V ar(X) note that limW0→0 V ar(X) = 0, Therefore,

lim
W0→0

d

dW0
V ar(X) = lim

W0→0

V ar(X)− limW0→0 V ar(X)

W0
= lim
W0→0

V ar(X)

W0
.

Note that

0 ≤ V ar(X) ≤ E[X2] ≤ W 2
0

m2
,

Therefore,

0 ≤ lim
W0→0

V ar(X)

W0
≤ lim
W0→0

W0

m2
= 0.

Combining all the above, we have

lim
W0→0

d

dW0
V ar (E [f − p|p]) = 0.

It then follows that the direct effect is zero. Summarizing

lim
W0→0

dV
dW0

=
d

dW0
V ar(f |p) < 0.

Similarly,

lim
W0→0

d
√
V

dW0
=

1

2
√
V ar(f |p)

d

dW0
V ar(f |p) < 0.

Step 2. There exists threshold Ŵ such that for all W0 ∈ (0, Ŵ ), we have d
√
V

dW0
< 0.

Denote the limit in the previous step λ < 0 and write the epsilon-delta definition of a limit (see, e.g.,
Kolmogorov and Fomin (1975)): for any ε > 0 there exists δ > 0 such that for all 0 < W0 < δ, we have∣∣∣d√VdW0

− λ
∣∣∣ < ε. Take ε = −λ. For such ε there exists δ > 0 such that for all W0 such that 0 < W0 < δ, we have

dV
dW0

< 0. Therefore, the desired statement holds if we take Ŵ = δ.

A.10.3 the Sharpe ratio

Step 1. We compute limW0→0
dSR
dW0

.

By definition SR = rp√
V . Therefore,

dSR

dW0
=

drp
dW0

√
V + 1

2
√
V

dV
dW0

rp

V
.

Note that

lim
W0→0

rp = lim
W0→0

V ar[f |p]
γm

(1− E[X]) =
V ar[f |p]
γm

and limW0→0 V = V ar[f |p]. For the derivatives, we have shown that

drp

dW0
<
∂rp

∂τε

dτε
dW0

.

The inequality is true since there is also a direct effect, which is negative. Moreover, we have shown before that

lim
W0→0

∂rp

∂τε
=

1

γm

dV ar[f |p]
dτε

.
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We have also shown before that

lim
W0→0

dV
dW0

= lim
W0→0

d

dW0
V ar(f |p) = lim

W0→0

dV ar[f |p]
dτε

dτε
dW0

.

Combining all of the above we get

lim
W0→0

dSR

dW0
<

dτε
dW0︸ ︷︷ ︸
>0

dV ar[f |p]
dτε︸ ︷︷ ︸
<0

1
γm

√
V ar[f |p] + 1

2
√
V ar[f |p]

V ar[f |p]
γm

V ar[f |p]︸ ︷︷ ︸
>0

< 0.

Step 2. There exists threshold Ŵ such that for all W0 ∈ (0, Ŵ ), we have dSR
dW0

< 0.

Denote the limit in the previous step λ < 0 and write epsilon-delta definition of a limit (see, e.g.,
Kolmogorov and Fomin (1975)): for any ε > 0 there exists δ > 0 such that for all 0 < W0 < δ, we have∣∣∣dSRdW0

− λ
∣∣∣ < ε. Take ε = −λ. For such ε there exists δ > 0 such that for all W0 such that 0 < W0 < δ, we have

dSR
dW0

< 0. Therefore, the desired statement holds if we take Ŵ = δ.
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B For Online Publication: A Setup with Noise Traders

In our baseline setting, we assume that noise in prices comes from aggregate hedging needs. It contributes
to the tractability of our baseline setting due to the irrelevance result: given exogenous private information,
informational efficiency of prices is independent of the constraints that specialists face. Thus, the informational
efficiency can be found by solving for equilibrium in the unconstrained economy. What matters for the irrelevance
result is that constraints affect not only the informed demand, but also the demand from hedging needs of the
specialists.

In this appendix, we eliminate the hedging needs of specialists and assume that the noise in prices comes
from classic noise traders. We assume that the noise is exogenous, in particular, it is not affected by constraints.
The question we answer here is “will the information spiral continue to hold in this setting?”. We argue that
the answer is positive. Moreover, the setting in this section highlights a novel channel for the interaction
between constraints and information efficiency. We call this channel the information aggregation channel: as
constraints tighten, noise is unaffected by constraints, whereas informed trading is more constrained; thus, the
price informativeness decreases, even with exogenous information.

In the baseline model, because of the irrelevance result, there was no information aggregation channel. In
order to focus on the new mechanism, in this section we consider a setting with exogenous information (shutting
down the information acquisition channel).31 We show that an exogenous shock that tightens constraints of
specialists leads to lower informational efficiency. In response, financiers set higher margins, further tightening
specialists’ constraints. This information spiral mechanism is similar to the one studied in the baseline model,
with the difference that it acts through the information aggregation function of price. We illustrate this new
channel in Figure 8.

Figure 8: Amplification mechanism

Drop in
wealth

Constraints

tightened

↓ Info.

aggregation

↓ Infor-

mational

efficiency

↑ Margins

Setup

Consider a two-date model with t = {1, 2}. Suppose the payoff of the risky asset at t = 2 is f = v + θ, where v
is the learnable component and θ is the unlearnable component. We assume that fundamental v is drawn from
an improper uniform distribution, whereas θ ∼ N

(
0, τ−1

θ

)
. There are three classes of agents in the economy:

specialists, noise traders, and nonspecialists. There is a unit mass of specialists with constant absolute risk
aversion γ who have wealth W0 and observe the same signal s = v+ ε, ε ∼ N

(
0, τ−1

ε

)
. Among these specialists,

fraction λ ∈ (0, 1) is subject to margin constraints while the remaining fraction (1−λ) is unconstrained. As in

31It is also worth noting that information acquisition is much less tractable in the setting that we consider in this
section.
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the baseline model, we first study fixed margins m for both long and short positions and later study VaR-based
margins. The noise traders submit exogenous liquidity demands u ∼ N

(
0, τ−1

u

)
, and, finally, the uninformed

nonspecialist is unconstrained and risk-neutral, that is, γm = 0.

Financial Market Equilibrium

Denote τ = τετθ
τε+τθ

. The optimal demand for an unconstrained specialist is given by

xi,u =
τ

γ
(s− p) .

For a constrained specialist, his demand is

xi,c =


xi,u, if −W0

m
<
τ

γ
(s− p) <W0

m
,

−W0

m , if τ
γ (s− p) < −W0

m , and

+W0

m , if τ
γ (s− p) > W0

m .

Hence, the aggregate demand of specialists is

X ≡ λxi,c + (1− λ)xi,u + u =


τ
γ (s− p) + u , if s− p ∈

[
−W0γ

mτ ,
W0γ
mτ

]
;

−W0

m λ+ τ
γ (s− p) (1− λ) + u , if s− p < −W0γ

mτ ;
W0

m λ+ τ
γ (s− p) (1− λ) + u , if s− p > W0γ

mτ .

The nonspecialist’s inferred information from price sp is an affine transformation of the intercept of the above
aggregate demand as follows:

sp =


s+ γ

τ u , if s− p ∈
[
−W0γ

mτ ,
W0γ
mτ

]
,

s+ γ
(1−λ)τ u , if s− p < −W0γ

mτ , and

s+ γ
(1−λ)τ u , if s− p > W0γ

mτ .

Given that nonspecialist is risk-neutral, she sets the semi-strong efficient price p = E [v|sp] .

Proposition 11. There exists a piecewise linear REE with price function, given by

p =


s+ γ

τ u, if u ∈
[
−W0

m ,+W0

m

]
;

s+ γ
τ(1−λ)

(
u− λW0

m

)
, if u > W0

m ; and

s+ γ
τ(1−λ)

(
u+ λW0

m

)
, if u < −W0

m .

In the piecewise linear REE, the price function takes different forms in different states of the world.
Consider u ∈

[
−W0

m ,+W0

m

]
. In this case, prices are the same as in the economy without constraints. However, if

u < −W0

m , lower constraint binds for informed specialists and their demand is information insensitive (a constant

−W0

m ). In this case, the aggregate demand that the market maker observes is given by

X = −W0

m
λ︸ ︷︷ ︸

constrained demand

+
τ

γ
(s− p) (1− λ)︸ ︷︷ ︸

unconstrained demand

+ u︸︷︷︸
noise

.

This implies that the aggregate demand (and hence, the market-clearing price) is more sensitive to noise trad-
ing in this region. Hence, informational efficiency is lower in this region (compared to the economy without
constraints). Similar logic follows in the case of u > W0

m . As a result, the nonspecialist’s posterior is not normal
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Figure 9: Posterior distribution of s conditional on p

The left panel shows the distribution in a model without constraints. The right panel shows the
distribution in a model with constraints. Other parameters are τu = 1, λ = 0.9, γ = 3, and α = 0.99.
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and is characterized by the conditional probability density function:

fs|p =


τ
γ

√
τuφ

(
τ
γ

√
τu (s− p)

)
, if s− p ∈

[
−W0γ

mτ ,
W0γ
mτ

]
;

(1− λ) τγ
√
τuφ

(
(1− λ) τγ

√
τu (s− p)− λ√τuW0

m

)
, if s− p < −W0γ

mτ ; and

(1− λ) τγ
√
τuφ

(
(1− λ) τγ

√
τu (s− p) + λ

√
τu

W0

m

)
, if s− p > W0γ

mτ

where φ (.) denotes the pdf of a standard normal distribution.

Figure 9 illustrates the distribution of s conditional on the price with and without the constraints. The
left panel shows the distribution without constraints and it is Gaussian. The right panel shows the distribution
with constraints and it is not Gaussian. The various lines show the distribution when the agents face different
constraints. For the states of the world in which constraints do not bind (i.e., center region of the distribution),
the posterior variance is the same as in the unconstrained case. For the states in which constraints bind for some
agents (tails of the distribution), there is less informed trade in the market and hence the posterior variance is
higher and leads to fatter tails. We therefore arrive at the following proposition about the interaction between
constraints and informational efficiency.

Proposition 12. If constraints become tighter for all specialists, that is, if W0

m decreases, (1) price informa-
tiveness (defined as the inverse of the conditional variance of the payoff) decreases (2) conditional distribution
of losses on short and long positions becomes heavier-tailed, that is, the probability of a loss greater than x on
a long position (given by Pr(p− f > x|p)) and probability of a loss greater than x on a short position (given by
Pr(f − p > x|p)) increase for any x > 0.

The proposition above demonstrates that the first part of our informational spiral holds in the setting
with noise traders. As constraints tighten, informational efficiency falls. As a result, conditional distribution
of losses becomes heavier-tailed. We show in the section below that these heavier tails feed back into higher
margins, closing the loop in our spiral.
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VaR-based margins

Up to now, we assumed that margins are exogenously fixed. Next, as in the baseline model, we study how
the price (and its informational efficiency) affects margins when they are set to control financiers’ value-at-risk.
VaR-based margins are described in (8) and we have the following result.

Proposition 13. Suppose margins are VaR-based. Then m+ = m− = m and margins solve

1− α = Eη [Pr (p− v > m+ η|p, η)] ,

where η ≡ θ − ε and η ∼ N(0, τ−1
η ). Both τη and Eη [Pr (p− v > m+ η|p, η)] are explicitly solved in the proof.

Moreover, as the conditional distribution of losses becomes heavier-tailed, margins become higher.

Proposition 13 shows that heavier tails of conditional loss distribution imply higher margins set by
financiers. Combining the results of Propositions 13 and 12, we get that the following version of information
spiral holds. As constraints tighten, informational efficiency drops and the distribution of losses becomes heavier-
tailed. This implies higher margins, feeding back into tighter constraints. This is represented in the Figure 8.
One consequence of the information spiral highlighted in this section is the following complementarity.

Corollary 1. Suppose that margins are increased for all specialists except specialist i. Then informational
efficiency drops and the distribution of losses becomes heavier-tailed. As a result, specialist i will face higher
margins as well.

Figure 10 illustrates the above proposition. The various lines in panel (b) represent the function f(m):
the margin that a specialist of interest faces, given that the margins faced by other specialists is m. The fact that
the function f(m) is upward-sloping signifies the complementarity outlined in the proposition above. Different
lines correspond to the functions f(m) for different levels of wealth. Note that for some wealth levels there could
be multiple equilibria (since f(m) crosses the 45-degree line in multiple points). We conclude Appendix B by
arguing that the analysis provided here highlights that the economic mechanism of the informational spiral is
present even in a setting with standard noise traders.

Proofs for Appendix B

Proof. (Propostion 11) Let A = W0

m . Conjecture that a piecewise linear REE can be written with a price
function of the form

p =


s+ γ

τ (u− u0) , if u ∈ [u0 −A, u0 +A] ;

s+ γ
τ(1−λ) (u− u0 − λA) , if u > u0 +A; and

s+ γ
τ(1−λ) (u− u0 + λA) , if u < u0 −A.

The constant u0 is pinned down by the equilibrium condition p = E[v|p], which implies

E[p] = E[v].

The above condition gives a unique solution, u0 = 0. It can be then verified that the condition p = E[v|p] holds
with u0 = 0.

Proof. (Proposition 12) Part 1 (Tightening of constraints leads to increase in conditional variance).
Since the price is efficient, one can write

V ar (v|p) = E
[
(v − E [v|p])2 |p

]
= E

[
(v − p)2 |p

]
.

We can further expand the above as follows:

E
[
(v − p)2 |p

]
= E

[
(v − p)2

1 [u ∈ [−A,A]] |p
]

+ E
[
(v − p)2

1 [u > A] |p
]

+ E
[
(v − p)2

1 [u < −A] |p
]
.
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Figure 10: VaR-based margins set by a financier

The figure shows the VaR-based margins set by a financier. The left panel plots the margins as a
function of specialists’ wealth W0. The right panel shows the margins as a function of margins set
by other financiers for different levels of wealth as indicated in the legend. Other parameters are:
τu = 1;λ = 0.9; γ = 3; α = 0.99.
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Now we expand the terms above as follows:

E
[
(v − p)2

1 [u ∈ [−A,A]] |p
]

= E

[(
ε+

γ

τ
u
)2

1 [u ∈ [−A,A]] |p = v + ε+
γ

τ
u

]
= E

[(
ε+

γ

τ
u
)2

1 [u ∈ [−A,A]]

]
The last equality is true because τv = 0, and hence, price is infinitely noisy signal of ε+ γ

τ u.
Proceeding similarly we get

E
[
(v − p)2

1 [u > A] |p
]

= E

[(
ε+

γ

τ(1− λ)
(u− λA)

)2

1 [u > A]

]

E
[
(v − p)2

1 [u < −A] |p
]

= E

[(
ε+

γ

τ(1− λ)
(u+ λA)

)2

1 [u < −A]

]
.

To derive the sign of ∂
∂AE

[
(v − p)2 |p

]
we note that due to symmetry we can evaluate this sign conditional

on ε = 0. This is true since the effect of a decrease in the upper constraint A on E
[
(v − p)2 |p, ε

]
will be the

opposite of the effect of an increase in the lower constraint −A on E
[
(v − p)2 |p,−ε

]
, and they will therefore

cancel out once we integrate with respect to ε.
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Now it is easy to see that

E
[
(v − p)2

1 [u ∈ [−A,A]] |p, ε = 0
]

= E

[(γ
τ
u
)2

1 [u ∈ [−A,A]]

]
+ E

[(
γ

τ(1− λ)
(u− λA)

)2

1 [u > A]

]

+ E

[(
γ

τ(1− λ)
(u+ λA)

)2

1 [u < −A]

]

increases as A decreases.

Part 2 (Distribution of losses). Let η = θ − ε. Then η ∼ N
(
0, τ−1

θ + τ−1
ε

)
. We first derive the distribution of

losses conditional on p and η. We split it into three parts, as follows:

Pr (p− s > x+ η|p, η) =Pr (p− s > x+ η|u > A) · Pr (u > A)

+ Pr (p− s > x+ η|−A < u < A) · Pr (−A < u < A)

+ Pr (p− s > x+ η|u < −A) · Pr (u < −A) .

For the first part, we can write

Pr (p− s > x+ η|u > A) · Pr (u > A) =Pr (p− s > x+ η, u > A)

=Pr

(
u > max

{
(1− λ)(x+ η)

γσ2
θ + λA

,A

})
.

Proceeding analogously with the other two term, one can obtain

Pr (p− s > x+ η|p, η) =


1− Φ

(
1
σu

(
(1−λ)τ(x+η)

γ + λa
))

, if x+ η > γ
τ a;

1− Φ
(

1
σu

(x+η)τ
γ

)
, if − γ

τ a ≤ x+ η ≤ γ
τ a

1− Φ
(

1
σu

(
(1−λ)τ(x+η)

γ − λa
))

otherwise

Consider η = y > 0. It can be seen from above that

− ∂

∂A
Pr (p− s > x+ η|p, η = y) >

∂

∂A
Pr (p− s > x+ η|p, η = −y) > 0.

Given the symmetry of the distribution of η this implies

∂

∂A
Pr(p− s > x+ η|p) = Eη

[
∂

∂A
Pr (p− s > x+ η|p, η = y)

]
< 0.

Thus if A decreases, conditional distribution of losses becomes heavier-tailed.

Proof. (Proposition 13) Conjecture that m+ = m− = m. For long positions, the financier sets margins such
that Pr (p− f > m|p) = 1− α. Note that

Pr (p− f > m|p) = Pr (p− s+ ε− θ > m|p)
= Eη [Pr (p− s > m+ η|p, η)]

The expression for Pr (p− s > m+ η|p, η) was derived in the proof of the Proposition 12. The margins are
given by 1 − α quantile of the conditional distribution of losses derived in Proposition 12. Therefore, as this
distribution become heavier-tailed, the margins increase.
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C For Online Publication: Risk-neutral measure and microfounda-
tion for VaR-based margins

Specialists in our model borrow from financiers, who impose a risk-based margin per unit of risky asset invested
(long or short). While fully endogenizing the risk-based margin as an optimal contract is beyond the scope of
our paper, in this appendix we attempt to describe the problem and frictions faced by the financier to rationalize
the use of risk-based margin. We start by defining the risk-neutral measure, which is used to compute the VaR
in our baseline specification.

C.1 Risk-neutral measure

Consider a nonspecialist who solves

max
x

E[− exp(−γx(f − p))|p].

The first-order condition implies

p = E

[
exp(−γx∗(f − p))

E[exp(−γx∗(f − p))|p]
f |p
]
, (68)

where x∗ denotes the nonspecialist’s optimal holding. Define a random variable Z = exp(−γx∗(f−p))
E[exp(−γx∗(f−p))|p] which

is a Radon-Nikodym derivative that defines the risk-neutral measure. Substituting the optimal demand of a

nonspecialist x∗ = E[f |p]−p
γV ar[f |p] , the Radon-Nikodym derivative can be written as

Z =
exp

(
−E[f |p]−p
V ar[f |p] (f − p)

)
E
[
exp

(
−E[f |p]−p
V ar[f |p] (f − p)

)
|p
] . (69)

Definition 4. The risk-neutral meausre is defined by the Radon-Nikodym derivative Z, given by (69). That is,
for any event A measurable with respect to information in prices, the risk-neutral conditional probability of that
event PrQ(A|p) = E[Z · I(A)|p]. The unconditional probability is defined as PrQ(A) = E[Z · I(A)].

The first-order condition (68) can be rewritten as p = EQ[f |p], which justifies the name of the new
measure. Our definition implies that the risk-neutral distribution of f |p is characterized by the following
probability density function

gf |p(f |p) = φ

(
f − E[f |p]√
V ar(f |p)

)
· Z,

where φ(·) is a density of a standard normal random variable. Direct calculation leads to the following result.

Lemma 9. Under the risk-neutral measure, f |p ∼ N (p,
√
V ar(f |p)).

Proof. (Lemma 9). We proceed by direct calculation

gf |p(f |p) = φ

(
f − E[f |p]√
V ar(f |p)

)
· Z

Substituting Z above and collecting the terms that depend on f , we get

gf |p(f |p) = ψ(p) · exp

(
− 1

2V ar(f |p)
(
f2 − 2fE[f |p]

)
− E[f |p]− p

V ar[f |p]
f

)
(70)

= ψ(p) · exp

(
− 1

2V ar(f |p)
(
f2 − 2f · p

))
.
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In the above, ψ(p) combines all the terms that do not depend on f. Since the density has to integrate to 1, we
can express

ψ(p) =

(∫
exp

(
− 1

2V ar(f |p)
(
f2 − 2f · p

))
df

)−1

. (71)

Since the normal density with mean p and variance V ar(f |p) can be represented by (70), and (71) the
lemma follows.

C.2 Financiers’ problem and VaR-margins.

We first consider the case in which specialists take a long position in the asset, and therefore, microfound the
expression for m+.

When specialists take a long position of the asset

We assume that the financier can borrow at a rate 1 − ε and lend to specialists at a rate of 1, that is, there
are gains from trade between financiers and specialists.32 We also assume that the specialists’ date-2 wealth is
not pledgeable and the financier has to pay a proportional cost to enforce the specialist to repay with date-2
wealth. Therefore, for every unit of asset that the specialist has purchased, he can transfer the asset and some
cash m+ to the financier’s account as a collateral. Effectively, the financier is lending an amount (p−m+) per
unit to the specialist while holding the asset as collateral.

At t = 2, the specialist has to repay (p−m+) to get the asset dividend f back. If the dividend is more
than the promised repayment, that is, f > p−m+, costly enforcement is not needed because the financier can
just take the repayment from the dividend of the asset, which is at his custody. If instead the dividend from the
asset is less than the promised repayment, we assume the financier has to pay an enforcement cost k = ε

1−α per

dollar lent to force the specialists to pay with his date-2 wealth.33 Thus, the financier earns a return “spread” ε
on lending to specialists but has to pay an enforcement cost ε

1−α per dollar lent in the states where f < p−m+.

Assume financiers have CARA utility over terminal wealth with risk aversion parameter γF . The
financier’s time-2 wealth consists of two parts: the first one comes from his investment in the assets, WA and
the second comes from lending to specialists WL. For the second part, we write

WL = xi
(
p−m+

)(
ε− ε

1− α
× 1

(
f < p−m+

))
= εxi

(
p−m+

)(
1− 1

1− α
× 1

(
f < p−m+

))
.

We will later assume that ε is small and calculate our expressions in the limit as ε→ 0. Given that the financier
is uninformed and unconstrained, we can write

WA =
E [f |p]− p (1− ε)
γFV ar [f |p]

(f − p) .

Note that financier’s information set is IF = {p, xi}. However, it is easy to see that information content in xi is
subsumed in prices and hence the financier only conditions on prices. The financier’s utility can then be written

32One way to rationalize this is to assume that specialists valuation of the risk free asset is different from financiers,
e.g., due to relative tax disadvantage as in Duffie, Gârleanu, and Pedersen (2005).

33Here α is just a normalization constant, but later on we will derive that it will be equal to the VaR confidence level
α.
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as

E [UF (WA +WL) |p] = UF (WA) + E
[
U
′
F (WA)WL|p

]
+ o(ε) (72)

= UF (WA) + E

[
U
′
F (WA) εxi

(
p−m+)(1− 1

1− α × 1
(
f < p−m+)) |p]+ o(ε) (73)

= UF (WA) +
εxi
(
p−m+

)
1− α E

[
U ′F (WA) |p

]
· (74)(

1− α− E

[
U
′
F (WA)

E
[
U
′
F (WA) |p

]1
(
f < p−m+) |p])+ o(ε). (75)

We assume that there is perfect competition between financiers, so that each of them should be indifferent
between lending to specialists and getting (75) or not lending and getting the outside option of UF (WA).
Equalising the above expression to UF (WA), and taking the limit as ε→ 0, we get

E

[
U
′

F (WA)

E
[
U
′
F (WA) |p

]1 (f < p−m+
)
|p

]
= 1− α.

Noting that limε→0
U
′
F (WA)

E[U ′F (WA)]
= Z, where Z is the Radon-Nikodym derivative associated with the rsik-neutral

measure, it then follows that m+ should be such that

PrQ
[
f < p−m+|p

]
= 1− α,

which coincides with expression for VaR-based margins.

When specialists take a short position of the asset

Financiers are also endowed with a large but finite amount of assets. We call them security lenders here because
they act as such. Their outside option is to lend the security to some unmodeled agents at a return 1 − ε.
Specialists can borrow the asset from the security lenders by pledging (p+m−) cash collateral per unit at
t = 1. As the specialists sell the asset immediately for p, they have to put up m− from their own wealth. At
t = 2, the specialists buy back the asset at f , return it, and retrieve (p+m−) from the security lenders. We
assume that if the value of the asset is higher than the cash collateral, that is, f > p+m−, the security lenders
have to expend k per dollar of asset lent in order to force the specialists to buy back and return the asset. Using
the same steps as in the above subsection, the margin m− should satisfy the following break-even condition:

εxi
(
p+m−

)
E
[
U
′

F (WA) |p
](

1− 1

1− α
× E

[
U
′

F (WA)

E
[
U
′
F (WA) |p

]1 (f > p+m−
)
|p

])
= 0

which after simplification reduces to

PrQ
[
f − p > m−|p

]
= 1− α,

which coincides with expression for VaR-margins.
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D For Online Publication: Specialists with initial endowments of
risky asset

In the baseline model, we assume that specialists have cash as initial endowment. In this section we assume that
specialists are endowed with y0 units of risky asset. As we show below, the functional form of the constraints
a(p) and b(p) will change in that case. In particular, the upper constraint b(p) will resemble the borrowing
constraint in Yuan (2005). The main result of this section is that the informational spiral will still be present
in this economy with different form of constraints.

Setup

The model is identical to the model in Section 2.1, except that the specialists are initially endowed with y0 > 0
units of risky asset. Moreover, we assume that they sell these assets to relax their constraints.34 Specialists’
wealth at date 2 is thus given by

Wi = y0p+ xi(v + θ − p) + eiθ.

In this section we assume that the nonspecialist is risk-neutral. We now derive the functional form of constraints
a(p) and b(p). As before, we assume that to build a long position in the risky asset, a specialist can borrow
from a financier at the risk-free rate, but he has to pledge a cash margin of m+ ≥ 0 per unit of asset to the
financier as collateral. The specialist can similarly establish a short position by providing, as collateral, a cash
margin of m− per unit of asset. The maximum positions they can take are constrained by the amount of cash
C they have

m−[xi]
− +m+[xi]

+ ≤ C.

The difference compared to baseline setting is that the amount of cash now depends on p:

C = y0p.

We can derive portfolio constraints as follows:

b(p) =
[ y0p

m+

]+
, a(p) = −

[ y0p

m−

]+
, (76)

where in the above we accounted for the fact that by definition the maximum long position b(p) has to be
positive, whereas the maximum short position a(p) has to be negative. We note the similarity between the
upper constraint b(p) and the linear borrowing constraint in Yuan (2005).

Equilibrium and the informational spiral

The proposition below characterizes the equilibrium in the financial market.

Proposition 14. Suppose that specialists have identical signal precisions τε and face constraints as described
above, then there exists a unique linear equilibrium in which informational efficiency β = βu and the function

g(p) = β2τz+τv
β2τz

· p.

Proof. Follows from Proposition 2 by taking the limit γm → 0.

34Strictly speaking, selling the assets relaxes constraints, and hence, is always optimal only if price is greater than both
margins. This is always true in practice because otherwise the agents could take larger positions without the financiers.
To have this reasonable property in the model, one can choose a high enough mean payoff of the asset to ensure that the
price is almost always greater than margins. This is because changing the mean payoff does not affect the margins but
changes the level of price.
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We now establish the two parts of the informational spiral are present in the alternative setup considered
in this appendix. First, we establish that as constraints tighten, specialists’ incentives to acquire information
decrease. See the Proposition below.

Proposition 15. If y0 drops, specialists’ constraints become tighter and their marginal value of information
decreases.

Proof. The fact that constraints tighten as y0 drops follows directly from (76). The rest of the proof follows
from Proposition 18.

As in Section 3.2 we assume that each financier sets her margin in order to control her VaR. As we
show in the proposition below, the second part of the informational spiral continues to hold: as informational
efficiency drops, margins increase and hence constraints tighten.

Proposition 16. If portfolio constraints are of the form of margin requirements, and if margins are VaR-
based, then there exists a unique generalized linear equilibrium in which the function g(p) is as character-
ized by Proposition 14 and the equilibrium margins are given by m+ = m− = Φ−1(α)

√
V ar[f − p|p] =

Φ−1(α)
√

(τv + β2τz)−1 + τ−1
θ . Consequently, for a given specialist’s wealth y0, if informational efficiency (β)

decreases, then the margins (m+ and m−) both increase. This implies that the lower constraint (i.e., a(p))
increases and the upper constraint (i.e., b(p)) decreases. In other words, as informational efficiency declines,
constraints become tighter.

Proof. Follows from Propositions 4 and 14.

Combining the results of Propositions 15 and 16, we get the a version of the informational spiral with
risky asset endowment y0 as wealth.

71



E For Online Publication: Equilibrium characterization with VaRP -
margins

Assume that financiers set the margins under physical measure. With risk-averse nonspecialists, the price can
be written as p = E [v|p]− rp (p) . As in Brunnermeier and Pedersen (2009), we assume that the financiers use
information from prices to set margin in order to control their VaR, as follows:

m+ (p) = inf
{
m+(p) ≥ 0 : Pr(p− f > m+(p)|p) ≤ 1− α

}
and

m− (p) = inf
{
m−(p) ≥ 0 : Pr(f − p > m−(p)|p) ≤ 1− α

}
,

where m+(p) and m−(p) are the margins on long and short positions (per unit of asset), respectively. We
now derive the expressions for these margins. To compute m+(p), we first determine the function m+

n (p) that
satisfies

1− α = Pr
(
E[f |p]− rp(p)− f > m+

n (p)|p
)

= Pr
(√
τm(E[f |p]− f) >

√
τm(m+

n (p) + rp(p))|p
)

= 1− Φ
(√
τm(m+

n (p) + rp(p))
)
.

Thus, we can write

m+(p) = [m+
n (p)]+ =

[
Φ−1(α)
√
τm

− rp(p)
]+

. (77)

Similarly, one can define m−n (p) which satisfies Pr(f − p > m−n (p)|p) = 1− α and can write

m−(p) = [m−n (p)]+ =

[
Φ−1(α)
√
τm

+ rp(p)

]+

. (78)

The endogenous VaR margins m+ (·) and m− (·) are determined by three variables. Both margins on long
and short positions increase in the exogenous level of confidence α and decrease in the endogenous informa-

tional efficiency of price β (through τ−1
m =

(
τv + β2τz

)−1
+ τ−1

θ ). In addition, the margin on long (short)
position decreases (increases) in the endogenous risk premium rp (p). We would like to emphasize the fact that
informational efficiency of price always affect the tightness of margin constraint.

Financial market equilibrium with a risk-averse nonspecialist

Formally, our financial market equilibrium with endogenous margin constraints is defined as follows: (1) fi-
nanciers and specialists determine demands and margins anticipating a particular price function (2) in equilib-
rium, demands and margins are consistent with anticipated price function. We hold the precision of specialists’
signals fixed.

Proposition 17. (Equilibrium with endogenous margin requirements) When the portfolio constraints are of
the form of margin as in equation (7) and margins are endogenously determined by VaR, there exists a unique
generalized linear equilibrium. Moreover, in this unique equilibrium the function g(p), i.e. the sufficient statistic
φ, is increasing in price.

Proof. (Proposition 17) One can prove that for every p there exists unique φ = g (p) such that the market clears
(similar to Proposition 2). We now prove that g(p) is invertible. We plug the expression for our endogenous
margins into ODE (5), assuming that both m+

n and m−n are positive. We get

∂g (p)

∂p
=
cmp + π2cp −

(
π1W0

m−(p)2 + π3W0

m+(p)2

)
∂rp(p)
∂p

π2cφ + cmφ
. (79)
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Moreover, using the fact that rp (p) = γm
τm

(
cm0 + cmφ g (p)− cmp p

)
, we get

∂rp (p)

∂p
=
γm
τm

(
cmφ

∂g (p)

∂p
− cmp

)
. (80)

Substituting (80) into (79), we get

∂g (p)

∂p
=
cmp + π2cp + γm

τm

(
π1W0

m−(p)2 + π3W0

m+(p)2

)
cmp

π2cφ + cmφ + γm
τm

(
π1W0

m−(p)2 + π3W0

m+(p)2

)
cmφ

.

Clearly, the derivative above is always positive, which means that the equilibrium function g (p) is invertible.
Thus, for each fundamental φ there exists a unique p clearing the market. The initial condition for the ODE
above can be found by clearing the market for a particular price, for example, p = 0.

We now examine specialists’ incentives to acquire information when nonpecialists’ risk aversion is small.

Proposition 18. Consider an economy in which all investors face portfolio constraints a(p) ≤ 0 ≤ b(p) such
that ∀γm ≥ 0, there exists a generalised linear financial market equilibrium with a monotone function g(p).
Next, consider an alternative economy with tighter constraints. That is, investors face portfolio constraints â(p)

and b̂(p) where a(p) ≤ â(p) ≤ 0 ≤ b̂(p) ≤ b(p) for all p, such that ∀γm ≥ 0, and there exists a generalised linear
financial market equilibrium with a monotone function ĝ(p). Suppose that in both economies investors choose
precision τε. Then there exists a γ > 0 such that ∀γm < γ, the marginal value of information decreases for all
investors when constraints change from [a(p), b(p)] to [â(p), b̂(p)].

Proof of Proposition 18. Denote MVI(a(p(φ)), b(p(φ)), p(φ; γm)) the marginal value of information when
the constraints are given by functions a(p) and b(p) and the equilibrium price function is given by p(φ). Denote

the new, tightened, contraints and the new price function by â(p), b̂(p) and p̂(φ; γm), respectively. Note that
since the information acquisition is held fixed, the sufficient statistic φ is the same across the two economies.
Note also that

lim
γm→0

(p̂(φ; γm)− p(φ; γm)) = 0.

This is because in both cases prices converge to E[f |φ].

Step 1. We prove that

lim
γm→0

(
MVI(â(p(φ)), b̂(p(φ)), p̂(φ; γm))−MVI(a(p(φ)), b(p(φ)), p(φ; γm))

)
< 0 . (81)

We write the expression in the brackets as follows

MVI(â(p(φ)), b̂(p(φ)), p̂(φ; γm))−MVI(a(p(φ)), b(p(φ)), p(φ; γm)) ={
MV I(â(p(φ)), b̂(p(φ)), p̂(φ; γm))−MVI(â(p(φ)), b̂(p(φ)), p(φ; γm))

}
︸ ︷︷ ︸

→0 as γm→0

+

(
MV I(â(p(φ)), b̂(p(φ)), p(φ; γm))−MVI(a(p(φ)), b(p(φ)), p(φ; γm))

)
︸ ︷︷ ︸

<0

The first term (in the curly brackets) converges to 0, since p̂(φ; γm) converges to p(φ; γm) pointwise. We now
prove that the second term in parentheses is strictly negative in the limit as γ → 0.

Note that when we compute that term, we keep the price function fixed, as if price function is independent
of portfolio constraints. We write the expression for the marginal value of information as

MVI =
τi

2τ2
v,iγ

Uu0
U0

. (82)
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The only term affected by constraints is
Uu0
U0

. Consider first the nominator Uu0 = E[−e−γCE1I(xui = xi)] =

E[−e−
(
W0+ γ

2τi
(xui )2− γ

2τθ
e2i

)
I(xui = xi)]. As constraints tighten, only the I(xui = xi) changes: we keep the price

function fixed, therefore the desired demands xui are the same. The term Uu0 increases (becomes less negative)
as constraints become tighter. Recall that specialists get negative utility; as constraints become tighter, they
get it in fewer states of the world. The denominator U0 decreases (becomes more negative) as with constraints,
the certainty equivalent CE1,i in all states weakly decreases. Thus, the ratio decreases as constraints become
tighter.

Step 2. There exists a γ > 0 such that ∀γm < γ, the marginal value of information decreases for all
specialists when constraints change from [a(p), b(p)] to [â(p), b̂(p)].

Denote the limit in (81) by λ and the difference between the marginal values of information across the
two economies as ∆MVI(γm) . By the epsilon-delta definition of a limit (see, e.g., Kolmogorov and Fomin
(1975)) it follows that for any ε > 0, there exists δ > 0 such that for all γm such that |γm|< δ, we have
|∆MVI(γm) − λ|< ε. Taking ε = −λ we get that for all γm such that γm < δ , ∆MVI(γm) < 0. Thus, the
desired statement holds for γ = δ.

Value of information with a risk-averse nonspecialist

Here, we study how the incentives of specialists to acquire information at t = 0 are affected by general portfolio
constraints in the case of risk-averse nonspecialists. The goal of this section is to generalize Proposition 18. When
nonspecialists are risk-averse, tightening constraints for all specialists is complicated because the equilibrium
price distribution will change, which affects price-dependent constraints.

Proposition 19. The following results hold:

1. Suppose all specialists are unconstrained. Once finite constraints a(p) and b(p) are introduced for all
specialists, the marginal value of information decreases for all of them.

2. Suppose that all specialists face portfolio constraints a(p) and b(p). Once all specialists are constrained to
hold 0 positions in the asset the marginal value of information decreases for all of them.

3. Suppose there exists an equilibrium with monotone function g(p). There exists γm such that for all
γm < γm as constraints tighten, specialists acquire less information.

Proof. Parts 1. and 2. follow directly from Proposition 3 and the fact that 0 <
Uu0
U0

< 1. Part 3 follows from
Proposition 18.

The part 1 of the proposition above demonstrates that when constraints a(p) and |b(p)| are tightened
from infinity to some finite positive numbers, marginal value of information for all specialists decreases. Similarly,
part 2 demonstrates that when constraints a(p) and |b(p)| are tightened from some finite positive numbers to
zero, the marginal value of information decreases as well. Part 3 of the proposition considers general changes in
the constraints. It shows that if risk aversion of the nonspecialist is below some threshold, specialists acquire
less information as their constraints tighten. All these results yield confidence that the Proposition 18 holds
with risk-averse nonspecialist. Even though we cannot prove the statement of Proposition 18 beyond the case
of γm small enough, we verify it numerically.

In Figure 11 we plot the marginal value of information, against the constraints specialists face. This
figure is typical: similar numerical results hold over the entire range of parameters. We record the following
observation for future reference.

Observation Suppose that all specialists face portfolio constraints a(p) and b(p) and that the nonspe-
cialist is risk-averse. If constraints become tighter for all specialists, that is, a(p) increases and b(p) decreases ,
the marginal value of information decreases for all specialists.

In the rest of this appendix, we focus on how margin requirements change with informational efficiency.
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Figure 11: Value of information

The plot shows the marginal value of information as a function of specialists’ wealth. Other
parameters are τv = 1; τz = 1; γ = 3; α = 0.99. All other paramters are chosen to be 1.
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Approximation of the price function p(φ)

In general, the equilibrium price function is nonlinear (as a function of fundamental φ) in the economy with
margin constraints. This is because, the fractions of specialists who are constrained or not vary with φ. In order
to facilitate additional analysis and interpretation of the results, we approximate the equilibrium price function
with a piece-wise linear price function with three linear parts. The idea is that as φ increases from low to high
value regions, demands of almost all specialists change from being constrained by the margin on short position
m−(·), to being unconstrained, and to being constrained by the margin on long position m+(·).35

Consider the case with some φ < φ− such that most specialists’ demand are constrained by the margin
on short position, that is, Xu ≈ − W0

m−(p) = − W0[
Φ−1(α)√

τm
+rp(p)

]+ . With the nonspecialist’s demand xm = τm
γm
rp(p),

the market clearing condition becomes

− W0[
Φ−1(α)√

τm
+ rp(p)

] +
τm
γm

rp(p) = 1 for rp (p) > −Φ−1(α)
√
τm

.

Denote rp− as the risk premium that satisfies the above equation. It is easy to check that the risk premium rp−

in this case is unique and does not depend on price. Finally, since the nonspecialist’s demand is a proportional
to risk premium and thus also a constant in price this case, the equilibrium price must adjust with respect
to the fundamental φ such that the nonspecialist’s demand stays constant. That is, from rp− = γm

τm
xm =

γm
τm

(cm0 + cmφ φ− cmp p), we find the linear price function p(φ) = − τm
γmcmp

rp− +
cm0
cmp

+
cmφ
cmp
φ for φ < φ−.

One can characterize linear pricing functions with similar procedures for the case of unconstrained
specialists in the intermediate range of fundamental φ ∈ (φ−, φ+) and the case of specialists’ demand being
constrained by the margin on long margin for the high range of φ > φ+. The boundary values of φ− and φ+

are pinned down by imposing continuity on the approximated price functions. We summarize the result in the
following lemma.

Lemma 10. (An approximated price function.) The equilibrium price function p (φ) can be approximated
by three linear price functions for three different scenarios about specialists’ demand: i) constrained by the

35For any fundamental φ, there are always constrained specialists and unconstrained specialists, thanks to dispersed
idiosyncratic shocks on specialists’ endowment and signal. Even at extreme φ, there are a measure non-zero of specialists
who are unconstrained, which makes the aggregate demand vary with fundamentals. Importantly, such arbitrarily small
variations in aggregate demand allows the nonspecialist to learn about the fundamental and clear the market with a
market-clearing price.
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margin on short position m−(p); ii) unconstrained; iii) constrained by the margin on long position m+(p). The
approximated price function p̂(φ)is

p̂(φ) =


1
cmp

(− τm
γm
rp− + cm0 + cmφ φ) for φ < φ−

c0+cm0 −1
cp+cmp

+
cφ+cmφ
cp+cmp

φ for φ ∈ [φ−, φ+]

1
cmp

(− τm
γm
rp+ + cm0 + cmφ φ) for φ > φ+

where rp− =
γm−kτm+

√
γ2
m+k2τ2

m+2kγmτm+4γmτmW0

2τm
, rp+ =

γm+kτm−
√
γ2
m+k2τ2

m−2kγmτm+4γmτmW0

2τm
with k =

Φ−1(α)√
τm

, and φj =
− τm
γmcmp

rpj+
cm0
cmp
− c0+cm0 −1

cp+cmp
cφ+cm

φ
cp+cmp

−
cm
φ
cmp

for j = {−,+}, and rp− > rp+ and φ− < φ+.

Note that the price function is more sensitive to fundamental at the intermediate values of φ when most
specialists’ demands are not restricted by the margin constraints. Intuitively, this is because the specialists can
adjust their demand and thus impound more information about fundamentals into price.

Margins with a risk-averse nonspecialist

In this section, we provide conditions for Proposition 4 and Remark 4 from the main text to still hold with
a risk-averse nonspecialist. Assume that each financier sets her margin in order to control her VaR, as in
Brunnermeier and Pedersen (2009). Given fundamentals v and z, the margins are given by

m+ (p) = [m+
n (p)]+ =

[
Φ−1(α)
√
τm

− rp (p)

]+

and m− (p) =

[
Φ−1(α)
√
τm

+ rp (p)

]−
.

Proposition 20. For a given specialists’ wealth W0, when informational efficiency (β) decreases, margins
increase for all price realizations if

γm <

√
τmΦ−1(α)

2

and W0 and σξ are small. This implies that, as informational efficiency drops, constraints become tighter.

Proof. Using the approximated price function, which is valid, given that σξ is small, we can write the risk
premium as

rp (p) =


rp− for g (p) < φ−

γm
τm

(
cmp

cp+cmp
+

cpc
m
φ −cφc

m
p

cp+cmp
g (p)

)
for g (p) ∈ [φ−, φ+]

rp+ for g (p) > φ+.

(83)

Let k = Φ−1(α)√
τm

and l = γm
τm

. Taking the derivative of margins with respect to τm, we get

∂m+ (p)

∂τm
=


∂m+

n (p)
∂τm

= −Φ−1(α)

2
√
τ3
m

− ∂rp(p)
∂τm

if Φ−1(α)√
τm

> rp (p)

0 otherwise
(84)

∂m− (p)

∂τm
=


∂m−n (p)
∂τm

= −Φ−1(α)

2
√
τ3
m

+ ∂rp(p)
∂τm

if Φ−1(α)√
τm

> −rp (p)

0 otherwise
(85)

where ∂k
∂τm

= − k
2τm

, ∂l
∂τm

= − l
τm

and
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∂m+
n (p)

∂τm
=

∂

∂τm
[k − rp (p)]

=


∂
∂τm

[k − rp−] for g (p) < φ−

∂
∂τm

[
k − γm

τm

(
cmp

cp+cmp
+

cpc
m
φ −cφc

m
p

cp+cmp
g (p)

)]
for g (p) ∈ [φ−, φ+]

∂
∂τm

[k − rp+] for g (p) > φ+

=


2l−3k
4τm

+ (2l+k)(l+k)+4W0l

4τm
√
l2+k2+2kl+4lW0

for g (p) < φ−

− k
2τm

+
1
γ

∂τ
∂τm

+ 1
lτm

( τγ+ 1
l )

2 for g (p) ∈ [φ−, φ+]

2l−k
4τm
− (2l−k)(l−k)+4lW0

4τm
√
l2+k2−2kl+4lW0

for g (p) > φ+.

The third term in the above expression is negative if 2l − k < 0. For W0 small enough, even the first term in
the above expression is negative. Similarly,

∂m−n (p)

∂τm
=

∂

∂τm
[k + rp (p)] =


∂
∂τm

[k + rp−] for g (p) < φ−

∂
∂τm

[
k + γm

τm

(
cmp

cp+cmp
+

cpc
m
φ −cφc

m
p

cp+cmp
g (p)

)]
for g (p) ∈ [φ−, φ+]

∂
∂τm

[k + rp+] for g (p) > φ+

=


− 3k

4τm
− l

2τm
− 2l2+k2+3kl+4W0l

4τm
√
l2+k2+2kl+4lW0

for g (p) < φ−

− k
2τm
−

1
γ

∂τ
∂τm

+ 1
lτm

( τγ+ 1
l )

2 for g (p) ∈ [φ−, φ+]

− k
4τm
− l

2τm
+ 2l2+k2−3kl+4lW0

4τm
√
l2+k2−2kl+4lW0

for g (p) > φ+

Note that the first term and second terms in the above expression are always negative. If W0 is small enough,
even the third term is negative. This implies that m−(p) always decreases with informational efficiency. So the
sufficient conditions for the margins to decrease with informational efficiency is 2l < k and small enough wealth.

Below we examine the conditions of the proposition above, for which Remark 4 from the main text still
holds.

Proposition 21. Suppose that the conditions of Proposition 20 hold. Then margins increase when informational
efficiency drops, even when the financier does not learn from prices.

Proof. We prove the proposition for m+, the margin on a long position. The proof for m− is analogous and is
omitted for brevity.

When financiers cannot condition margins on prices, the margins are determined by the following equa-
tion:

α = E
[
Φ
(√
τm(m+ + rp(p))

)]
. (86)

We prove this proposition by contradiction. Denote m+
n (p) = Φ−1(α)√

τm
− rp(p) (the margins the financier would

set if he would be able to condition on prices). Suppose that m+
n decreases as informational efficiency drops.

One can write

√
τm
(
m+ + rp(p)

)
=
√
τm
(
m+ −m+

n (p) +m+
n (p)− rp(p)

)
=
√
τm

(
m+ −m+

n (p) +
Φ−1(α)
√
τm

)
=
√
τm
(
m+ −m+

n (p)
)

+ Φ−1(α).

We assume that the conditions of Proposition 20 hold, therefore, m+
n (p) increases for all p as informational

efficiency drops. At the same time,
√
τm decreases and we assumed that m+ drops as well. This implies that
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E
[
Φ
(√
τm(m+ + rp(p))

)]
drops when informational efficiency drops. A contradiciton with (86).

The following corollary to Propositions 19 and 20 generalizes Corollary ??.

Corollary 2. Suppose that the conditions of Proposition 20 hold and γm is small enough. Then a decrease in
specialist wealth W0 decreases informational efficiency β and increases VaR-based margins m+,m−.

Proof. Follows directly from Propositions 19 and 20.

Intuitively, information efficiency decreases with wealth (Proposition 19); when information efficiency
drops, margins rise (Proposition 20).

Micro-founding VaRP -margin

Here, we provide a microfoundation for situations where risk should be evaluated under physical measure.

We assume that financiers do not participate in financial markets and are exposed to only idiosyncratic
shocks. Given this, the wealth from financing activity is not correlated with their other wealth, and the financier
is effectively risk-neutral with respect to income from financing. The financier is endowed with a large but finite
amount of cash. We assume that the the financier gets a gross return of 1 when lending to the specialists but
only (1− ε) when investing in the risk-free asset.

We also assume that the specialists’ date-2 wealth is not pledgeable and the financier has to pay a cost
to enforce the specialist to repay with date-2 wealth. Therefore, for every unit of asset that the specialist has
invested, he can transfer the asset and some cash m+ to the financier’s account as a collateral. Effectively, the
financier is lending an amount (p−m+) to the specialist while holding the asset as collateral.

At t = 2, the specialist has to repay (p−m+) to get the asset dividend f back. If the dividend is more
than the promised repayment, that is, f > p − m+, costly enforcement is not needed because the financier
can just take the repayment from the dividend of the asset which is at his custody. If instead the dividend
from the asset is less than the promised repayment, we assume the financier has to pay an enforcement cost k
per dollar lent to force the specialists to pay with his date-2 wealth. In sum, upon observing p, a competitive
financier chooses a cash margin m+ so that he is indifferent between lending to the specialists and investing in
the risk-free asset

xi(p−m+)− Pr(xif < xi(p−m+)|p)kxi(p−m+) ≥ xi(p−m+)(1− ε) (87)

After simplification, we have

Pr(p− f > m+|p) ≤ ε

k
(88)

which coincides with the VaR margin constraint in (8) when
ε

k
is replaced with 1− α.
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