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Simultaneous Multilateral Search

Abstract

We study simultaneous multilateral search (SMS) in an over-the-counter market: when searching,
an investor contacts several potential counterparties and then chooses to trade with the one offering
the best quote. Search intensity (how frequently one can search) and search capacity (how many
potential counterparties one can contact) affect equilibrium objects differently. Despite investor
homogeneity, quote dispersion arises in equilibrium, with bids possibly crossing asks. We contrast
SMS to bilateral bargaining (BB), where investors engage in Nash bargaining with one potential
counterparty each time. Given the choice, investors might prefer BB over SMS, hurting allocative
efficiency.
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1 Introduction

Search is a key feature in over-the-counter (OTC) markets. Duffie, Gârleanu, and Pedersen (2005,

hereafter DGP) pioneered the theoretical study of OTC markets in a framework of random matching

and bilateral bargaining: investors search for counterparties and are randomly matched over time.

Upon successful matching, i.e., a buyer meeting a seller, the pair engage in Nash bargaining and

split the trading gain according to their endowed bargaining power.

However, investors’ interaction is not always bilateral. For example, in recent years, there is

a rise of electronic trading in OTC markets, manifested mainly in the form of Request-for-Quote

(RFQ) protocol. In such platforms (trading many corporate bonds and derivatives), investors can

query multiple potential counterparties at the same time and then choose to trade with the one

offering the best price.1 Hendershott and Madhavan (2015) report that more than 10% of trades

in the $8tn corporate bond market is completed via RFQ. See also Bessembinder, Spatt, and

Venkataraman (2019) for an extensive review on the OTC market structure.

Even without an RFQ platform, traders can engage in multilateral search. Consider the trading

desk of an institution. When executing an order, the trading desk can call up a dealer and spend

effort and time to negotiate the terms (bilateral bargaining). Alternatively, the trading desk can call

up multiple dealers and/or other institutions, not negotiating but just asking for their (indicative)

quotes and then picking the best one. The key difference between the two search methods is that

the latter spares the effort and time of bargaining. In return, the trading desk reaches more potential

counterparties and implicitly encourages price competition among them, as if running an auction.

This paper develops a theoretical model, tailoring to the above one-to-many searching. Specif-

ically, an investor can query multiple potential counterparties at the same time, hence the name

“Simultaneous Multilateral Search” (SMS). (RFQ in electronic OTC trading is a prominent ex-

1 Conventionally, RFQ allows investors to solicit quotes only from intermediaries like banks and dealers. More
recently, the so-called all-to-all trading allows investors to cut the intermediaries and electronically query quotes from
each other. Embracing this trend are the largest electronic marketplaces like MarketAxes, Tradeweb, and Liquidnet.
See “Wall Street Is Getting Cut Out of Bond Market It Long Dominated,” April 1, 2019, Bloomberg.
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ample of such.) To compare, the bulk volume of the OTC literature, following DGP, features an

investor randomly meeting with one and only one potential counterparty, the pair then engaging in

“Bilateral Bargaining” (BB).

The objective of this paper is two-fold. First, the model aims at understanding the equilibrium

features of SMS: How likely will the contacted investors respond—what is the “response rate?”

What is the optimal quoting strategy when contacted? How are asset prices as well as market quality

measures affected by SMS? Second, contrasting SMS and BB, the paper explains how investors

choose to search: When is SMS preferred? Which is more efficient in terms of welfare? How does

an advancement of search technologies affect all of above?

The model, set up in details in Section 2, builds on DGP. A continuum of investors are subject

to stochastic valuation shocks for an asset. Those who hold the asset but have low valuation want

to sell, while those without the asset but with high valuation want to buy. They actively search

according to independent Poisson processes with intensity ρ. Upon searching, instead of BB as in

DGP, they do SMS: Each investor randomly contact n other investors, who make take-it-or-leave-it

offers to the searching investor. Effectively, a searching investor runs a first-price auction among n

randomly selected other investors.

Importantly, the n randomly contacted investors might not be the right counterparty for the

searching investor, and they may refuse to quote. For example, for a searching buyer, not all n

contacted will own the asset and have low-valuation. To highlight, the “response rate”—the prob-

ability of finding one right counterparty—is an endogenous equilibrium outcome. In equilibrium,

characterized in Section 3, the response rate to a searching buyer (high-valuation non-owner) is

the proportion of sellers (low-valuation owners) in the market; and vice versa. Such endogenous

response rate is an imporatant equilibrium feature and yields novel results. For example, if the

equilibrium response rate is high, competition among the contacted investors becomes fierce, al-

lowing the searching investors to scoop up a larger share of the trading gain. In this sense, SMS

endogenizes investors’ bargaining powers, which are by and largely exogenous in existing search
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models.

The model predictions echo the empirical patterns in OTC markets, especially in electronic

platforms with the RFQ protocol. Notably, prices have non-degenerate dispersion in equilibrium,

despite that there is no heterogeneity across buyers or across sellers. This is because when contacted

and quoting, an investor is unsure of how many of the other n − 1 are actual competitors. They

might all be, or perhaps none of them. As such, the contacted always quotes following a mixed-

strategy, generating price dispersion. Hendershott and Madhavan (2015) document such dispersion

empirically in dealers’ responding quotes on an RFQ platform. In the same vein, such mixed-

strategy driven quotes can result in negative bid-ask spreads—a seller’s ask might be even lower

than a buyer’s bid. Hau, Hoffmann, Langfield, and Timmer (2017) show in their Figure 6 such

price dispersion and negative spreads for both RFQ platform users and non-users. Section 4.1 also

delivers testable implications linking the skewness and the magnitude of the dispersion to other

observable market qualities.

The search quality of SMS is characterized by the intensity ρ (how frequently one can search)

and the capacity n (how many potential counterparties one can contact). Section 4.2 finds that the

two have contrasting implications for various equilibrium objects. For example, a higher ρ always

pushes the equilibrium price toward the Walrasian level (at which the short side of the market

captures all trading gain); but, in contrast, n can drive price nonmonotonically, i.e., sometimes

away from the efficient Walrasian level.

The key mechanism is how ρ and n might affect differently the split of trading gain between

the long and the short side of the market. Both a higher ρ and larger n allow investors to find

counterparties more easily. Such improved matching makes the short side even shorter, lowering

response rate to the long side’s searching. This tilts the trading gain more towards the short side.

In addition, a larger n intensifies the competition among the quoting investors, hurting them but

benefiting the searching side. Relative to the short side, the long side (larger population) searches

more and, therefore, benefits more from the intensified competition. Thus, a larger n tilts the
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trading gain more towards the long side. These two contrary effects of n drive the asset price

nonmonotonically. To emphasize, the above effects of ρ and n in SMS go through the endogenous

response rates, which influence the short and the long sides of the market differently.

Section 5 studies how investors choose between BB and SMS. In equilibrium, investors do less

SMS when they can search more often (high search intensity ρ). This is because more frequent

searching leads to more efficient matching, leaving fewer counterparties unmatched waiting. Con-

sequently, the SMS response rates drop, reducing the competition among potential counterparties,

and a searching investor expects a lower trading gain share. In contrast, under BB, the searching

investor’s bargaining power is exogenous, unaffected by search intensity. Hence, SMS becomes

less and less attractive, as ρ increases. In view of the prevalence of electronic OTC trading, this

result predicts that investors “call” (bargain with dealers, BB) more often and “click” (on an RFQ

platform, SMS) less when they can search more frequently. Again, this prediction is driven by

how the SMS response rates (and hence investors’ bargaining powers) are endogenously affected

by search intensity.

From a social planner’s perspective, SMS is always allocatively more efficient than BB, because

under SMS investors try to reach more counterparties, thus improving matching and trading. (The

planner is not concerned of the split, but only the realization, of the trading gain.) The model

therefore also delivers a policy-relevant message: Regulations that improve search intensity allow

investors to match and trade more frequently, but at the cost of the under-utilization of the more

efficient SMS. For example, in an institution, the trading desk only search and trade when approval

is obtained from the back office, where there is a long process of due diligence, risk management,

and regulatory compliance. If deregulation streamlines this back office journey, institutions will

search more often but only with more BB. Compared to a benchmark where all investors use SMS,

the efficiency loss will exacerbate.

The paper contributes to three strands of the literature. First, adding to the search models of

OTC markets, this paper introduces the possibility for investors to search for multiple potential
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counterparties at the same time. This SMS feature does not exist in, e.g., Duffie, Gârleanu, and

Pedersen (2005, 2007), Weill (2007), Vayanos and Weill (2008), Lagos and Rocheteau (2009), or

Lagos, Rocheteau, and Weill (2011). As such, in the current model, competition among quoting

investors and the uncertainty about the number of competitors generate price dispersion, which is

absent in the above.

Several other works feature price dispersion but the underlying mechanisms differ from SMS.

In Hugonnier, Lester, and Weill (2016) and Shen, Wei, and Yan (2018), investors’ heterogeneous

valuations drives price dispersion. Colliard, Foucault, and Hoffmann (2018) analyze the distribution

of inter-dealer prices through an exogenous dealer network and generate predictions regarding the

connectedness of core and peripheral dealers. Price dispersion also arises Yang and Zeng (2018)

when dealers coordinate on a high-liquidity equilibrium, in which dealers of different inventory

levels quote prices differently. Arefeva (2017) studies a housing market where each seller runs an

auction among potential buyers, similar to SMS, but explains the housing market volatility with

exogenous influx of buyers and their randomly drawn valuations.

Second, this paper contributes to the theory literature on RFQ protocol in OTC markets. Vogel

(2019) studies a hybrid OTC market where investors can trade in both the traditional voice market

(modeled after Duffie, Dworczak, and Zhu, 2017) and the electronic RFQ platform. Liu, Vogel,

and Zhang (2017) compare the the electronic RFQ protocol in an OTC market with a centralized

exchange market. In both models, the RFQ trading parts share similar features with the current paper,

where the searching agent reaches out to finite number of dealers who respond with uncertainty.

The key difference is that in the two papers the response rate in RFQ are exogenous, whereas they

are endogenous in our model and depend on both search intensity and search capacity. Importantly,

such endogenous response rate drives the results on the non-monotone effects of search capacity n

on asset prices as well as the comparison between SMS and BB.

Third, this paper contributes to the auctions literature with uncertain number of bidders (see,

e.g., the survey by Klemperer, 1999) and to the literature on pricing with heterogeneously informed
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consumers (e.g., Butters, 1977; Varian, 1980; and Burdett and Judd, 1983). Apart from the above

literature speaking to OTC markets, applications of such “random pricing” mechanisms are also

seen recently in exchange trading, like Jovanovic and Menkveld (2015) and Yueshen (2017). The

main insight from this paper is that such uncertainty about the number of quoters (bidders) can

arise endogenously from the searching process.

2 Model setup

Time is continuous. All random variables and stochastic processes are defined on a fixed probability

space.

The asset. There is one asset in fixed supply s, where 0 < s < 1. The asset pays off a unity

constant dividend (consumption good) flow.

Investors. There is a continuum of risk-neutral, infinitely lived investors of unit measure. They

discount future consumption at constant rate r (> 0). At any time t , an investor gets utility of∫ ∞
t

cue
−rudu from future consumption stream {cu}u≥t .

An investor can be characterized according to his inventory holding xt and his preference of

the asset θt at time t . First, each investor can only hold xt ∈ {0, 1} units of the asset. If xt = 1,

the investor is referred to as an owner; and xt = 0 a non-owner. Second, an investor’s preference

θt ∈ {h, l} (high or low) is stochastic and evolves according to a continuous time Markov chain:

P(θt+dt = h | θt = l ) = λudt ,

P(θt+dt = l | θt = h ) = λddt .

When θt = l and xt = 1, the investor incurs a holding cost of δ (> 0) units of the consumption good

per unit of time. There is no such holding cost otherwise. Taken together, there are four types of

investors ({0, 1} × {h, l}), T := {ho,hn, lo, ln}. At each instance t , their corresponding population

measures are denoted by µσ (t), for ∀σ ∈ T , with
∑

σ∈T µσ (t) = 1.
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Search and trading. The above setup exactly follows DGP. This paper differs in modeling the

search and the trading processes. Each investor can only search at the successive event times of a

Poisson process (independent of one another) with intensity ρ (> 0). Upon searching, if he wants

to trade, the investor is able to reach n (finite integer) other investors at random from the whole

population and ask them for quotes. The contacted ones optimally make take-it-or-leave-it offers

to the searching investor, who then chooses to trade against the best quote or walks away.

A contacted investor may be unable to accommodate the searching one. For example, the

searching investor might want to buy, while the contacted might happen to be a non-owner. In such

cases, the contacted investor will not provide a quote. Importantly, when quoting, one does not

observe the types of the other (n − 1) contacted investors.

Remarks. Several remarks about the model are in order.

Remark 1. The search for quotes is a realistic feature of OTC trading. For example, in the housing

market, a seller can be in touch with possibly many buyers at the same time and, likewise, a

buyer can be asking prices from owners of multiple properties. In corporate bond markets,

investors contact multiple dealers at the same time to solicit their competing quotes, often

via the so-called “Request-for-Quote” or RFQ system (see Hendershott and Madhavan, 2015).

Conventionally, RFQ only allows investors to solicit quotes from dealers. The model does not

specifically study the distinction between investors and dealers. Rather, the model setting is

best thought of as an example of the “all-to-all” search protocol, a recent new trend seen in

the OTC markets (see Footnote 1).

Remark 2. The search technology is goverened by two parameters: the intensity ρ and the capacityn.

The intensity ρ, inherited from DGP, reflects how frequently an investor can actively search.

Consider an institution for example. The efficiency of its back office determines the speed—

the intensity ρ—to initiate trades. In particular, trading ideas need to go through careful

due dillgence, risk management, as well as regulatory compliance, the complexity of which
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negatively affects the intensity ρ. Once approved, the execution by the trading desk, together

with the trading platform, determines the search capacity n, new in this model. Two settings

are offered to help interpret the parameter n. First, a larger n can map to a larger execution

team that can simultaneous reach more outside investors, institutions, dealers, etc. Second, in

RFQ platforms, the capacity n is a market design choice, reflecting the number of quotes one

can solicit in one “click.” For example, on the MD2C platform operated by Bloomberg Fixed

Income Trading, clients select up to n = 6 dealers (Fermanian, Guéant, and Pu, 2017).

Remark 3. Compared to bilateral bargaining (BB), the key difference is what a searching investor

does after reaching a (potential) counterparty. Under BB, the two then engage in (time-

consuming) bargaining to reach a term as in DGP. Under SMS, the searching investor only

asks for a quote from the counterparty and he does so simultaneously with many counterparties,

before picking the best quote to trade. The current model focuses on SMS up to Section 4, but

it is possible that investors endogenously choose between BB and SMS, an extension analyzed

in Section 5.

Remark 4. As in DGP, the holding cost δ may represent hedging reasons to sell, high financing

costs, or other negative private valuation reasons like relative tax disadvantage.

3 Stationary equilibrium

There are three sets of equilibrium objects: 1) investors’ population sizes {µσ }; 2) their quoting

strategies (detailed below); and 3) their value functions {Vσ }. These objects depend on the investor

type σ ∈ T and, in general, also on time t . This section looks for a stationary, Markov perfect

equilibrium, under which the objects above no longer changes over time t . The focus is on symmetric

quoting strategies; i.e., all investors of the same type quote according to the same strategy.
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3.1 Population

In a stationary equilibrium, the measure of h-type investors is time-invariant and can be found as

η :=
λu

λu + λd
.

Following DGP, the analysis only focuses on the case of

0 < s < η;

that is, there is excess demand over the asset supply (a seller’s market). The case of s > η (a buyer’s

market) is symmetric and is omitted for brevity. The population sizes satisfy

total population of h-type: µho + µhn = η;(1)

total population of l-type: µlo + µln = 1 − η;(2)

market clearing: µho + µlo = s .(3)

One more equation is needed in order to pin down the four population sizes. This last condition

arises from investors’ trading. In equilibrium, only two types of investors want to trade: The lo-type

wants to sell and the hn-type wants to buy. The other two types, ho and ln, stand by and do not

trade (which rigorously speaking is a conjecture that is later verified after Proposition 2).

Consider the inflows to and the outflows from the the lo-sellers. In a short period of dt , a

measure of µloρdt of sellers will be searching, of which only a fraction 1 − (1 − µhn)n will find at

least one hn-buyer (out of n) and trade will occur. Hence, there is an outflow of

νlodt := (1 − (1 − µhn)n)µloρdt

due to the searching lo-sellers. Analogously, there is an outflow of

νhndt := (1 − (1 − µlo)n)µhnρdt

due to the searching hn-buyers. Note that νlo and νhn are also the intensities of trades initiated,

respectively, by the lo-sellers and by the hn-buyers. Finally, due to preference shocks, there is an
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inflow of µhoλddt and an outflow of µloλudt . In a stationary equilibrium, the sum of the above

in/outflows should be zero:

−νlo − νhn − µloλu + µhoλd = 0,(4)

which is the fourth equation needed to pin down the population sizes.

Lemma 1 (Stationary population sizes). There is a unique solution {µho, µhn, µlo, µln} ∈ (0, 1)4

to the equation system of (1)-(4), characterizing the population sizes in a stationary equilibrium.

Note that in addition to the search intensity ρ, the stationary equilibrium population sizes depend

on the search capacity n. This highlights the difference of the current model from DGP, where only

the search intensity ρ matters. (The Nash bargaining power parameters do not enter the population

dynamics in DGP, either.)

3.2 Quoting strategies

This subsection studies the quoting strategies of contacted investors. After a trade, the original

lo-seller becomes ln and the original hn-buyer becomes ho. Therefore, for a trade to happen, the

transaction price p must fall between

Rlo := Vlo −Vln ≤ p ≤ Vho −Vhn =: Rhn .(5)

The first inequality ensures that the lo-seller is willing to sell, while the second ensures that the

hn-buyer is willing to buy. The left-hand side expression Rlo = Vlo − Vln is in fact the lo-seller’s

reservation price, and the right-hand side Rhn = Vho −Vhn is the hn-buyer’s. It is conjectured here

that there is positive gains from trade:

0 ≤ Rlo ≤ Rhn,
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a condition that is later verified after finding the equilibrium expressions for the value functions {Vσ }

(see Proposition 2). For notation simplicity, write the total trading gain as

∆ := Rhn − Rlo = (Vho −Vhn) − (Vlo −Vln).

Recall that νlo and νhn are the trading intensities initiated by lo and hn investors, respectively. The

total trading gain per unit of time is, therefore,

(νlo + νhn)∆.(6)

The discussion below focuses on when an hn-buyer is searching for lo-sellers, who, once contacted,

make take-it-or-leave-it offers to the searching buyer. (The case of lo-sellers searching forhn-buyers

is symmetric and omitted.)

When a trade occurs, the buyer and the seller splits the surplus ∆ according to the transcation

price p. The seller gets p − Rlo, and the buyer gets Rhn − p. A quoting seller wants to obtain the

full surplus by setting p ↑ Rhn. However, he faces the competition from the other (n − 1) potential

sellers, as their quotes (ask prices) might be lower than his. Yet not all of the other (n−1) contacted

are necessarily also sellers (lo-type). The quoting seller therefore engages in a price competition

with unknown number of competitors.

Such price competition differs from the standard Bertrand price competition, where every seller

quotes his reservation price of Rlo and the buyer gets the full surplus ∆. Here, every seller has

incentive to charge some mark up, α∆ for 0 ≤ α ≤ 1, on top of his reservation Rlo. (The markup α

is measured as a fraction of the total surplus ∆.) This is because he might actually be the only seller

among the n contacted investors, in which case his marked-up price is the only price avaialable

to the buyer. So long as the markup α ≤ 1 the buyer will accept it2 and the seller can pocket the

markup α∆ as his profit. In a Nash equilibrium, however, the markup α cannot be deterministic, as

the undercutting argument of Bertrand competition will prevail. The above heuristic discussion is
2 To see this, note that by accepting an offer p = Rlo +α∆, the searching buyer becomes ho and gets a continuation

value of Vho − p. If instead he rejects the offer, his value remains as Vhn . This searching buyer will accept the offer as
long as Vho − p ≥ Vhn , a condition equivalent to α ≤ 1.
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formalized in the proof and summarized by the following proposition.

Proposition 1 (Equilibrium quoting). Within symmetric strategies, there is a unique mixed-

strategy equilibrium. Define

F (x ; µ,n) :=
1
µ
−
(
1
µ
− 1

)
x−

1
n−1 , with support (1 − µ)n−1 ≤ x ≤ 1.

Then:

• When an lo-seller is contacted, he quotes a take-it-or-leave-it ask Rlo + α∆, where α is a

random markup with c.d.f. F (α ; µlo,n).

• When an hn-buyer is contacted, he quotes a take-it-or-leave-it bid Rhn − β∆, where β is a

random markdown with c.d.f. F (β ; µhn,n).

Note that when n = 1, F (·) becomes a degenerate c.d.f. with a single probability mass at the

maximum markup(down) α = β = 1.

The above proposition implies that a quoting lo-seller expects a trading price of Rlo + ᾱ∆ and a

quoting hn-buyer expects Rhn − β̄∆, where

ᾱ := E[α] = (1 − µlo)n−1 and β̄ := E[β] = (1 − µhn)n−1.(7)

To see this, consider a quoting seller and note that under the mixed-strategy equilibrium, he must

be indifferent across all possible markups, α ∈ [0, 1]. In particular, the only situation for the

maximum markup α = 1 to “win” is that there are no other competing sellers, i.e., with probability

(1 − µhn)n−1. Therefore, when contacted, a quoting lo-seller expects a profit of ᾱ∆, where ᾱ can be

interpreted as his expected trading gain share. Likewise, a quoting hn-buyer expects β̄∆.

Proposition 1 characterizes a conctacted investor’s random pricing strategy. From a searching

investor’s perspective, however, the expected trading price has a different distribution, because he

always picks the best quote, if there are any. Consider a searching hn-buyer for example. He

contacts n investors but knows that the number of counterparty he will actually find, Nlo, is random

and follows a binomial distribution with n draws and success rate µlo (i.e., “response rate”). Each of
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these Nlo counterparties then quotes a random price accroding to F (α ; µlo,n) stated in Proposition 1.

The searching buyer then picks the lowest ask (the lowest markup) among the Nlo available quotes.

The c.d.f. of this minimum markup is 1 − (1 − F (α ; ·))Nlo−1 for Nlo ≥ 1. (In the case of Nlo = 0,

the buyer finds no quote and there is no trade.) Averaging across all possible Nlo ∈ {1, ...,n}, the

corollary below characterizes the distribution of this minimum markup.

Corollary 1 (Trading prices: from a searching investor’s point of view). Define

G(x ; µ,n) :=
1 − (1 − µ)nx− n

n−1

1 − (1 − µ)n with support (1 − µ)n−1 ≤ x ≤ 1.

Then:

• When an hn-buyer is searching, he expects to trade with probability (1 − (1 − µlo)n) at

price Rlo +A∆, where A is the random minimum markup and has c.d.f. G(A; µlo,n).

• When an lo-seller is searching, he expects to trade with probability (1−(1− µhn)n) at price

Rhn − B∆, where B is the random minimum markdown and has c.d.f. G(B; µhn,n).

Note that when n = 1, G(·) becomes a degenerate c.d.f. with a single probability mass at the

maximum markup(down) A = B = 1.

Therefore, the searching hn-buyer expects a trading price of Rlo + E[A]∆ and a searching lo-seller

expects Rhn − E[B]∆. Using the distributions for A and B in Corollary 1, it can be found that

Ā := E[A] = nµlo · (1 − µlo)n−1

1 − (1 − µlo)n
and B̄ := E[B] = nµhn · (1 − µhn)n−1

1 − (1 − µhn)n
(8)

are the expected minimum markup and markdown, respectively. Conditional on finding a counter-

party, a searching hn-investor expects a profit of Rhn − (Rlo + Ā∆) = (1 − Ā)∆, while a searching

lo-investor expects (1 − B̄)∆.

Several features of the above equilibrium pricing are worth highlighting.

Splitting the surplus. Proposition 1 shows how the total surplus ∆ is split between a pair of

matched investors. For example, if the pair is formed by a searching hn-buyer and a contacted

lo-seller, the former gets (1 − ᾱ)∆ and the latter gets ᾱ∆, where ᾱ = (1 − µlo)n−1 decreases in n
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(taking µlo as given). The result encompasses the two extreme scenarios, as the search capacity n

varies. When n = 1, the contacted seller becomes a monopolist setting the price and extracts all

the surplus ∆. When n ↑ ∞, the seller is effectively price-competing with infinitely many others

and all the surplus is attributed to the searching buyer, as in a Bertrand competition.

Corollary 1 instead shows how ∆ is split between one searching investor and n potential

counterparties. For example, a searching hn-buyer expects (1− Ā)∆, but the rest Ā∆ is not expected

by any one specific investor, but by the Nlo contacted lo-sellers. (Recall that Nlo is a Binomial

random variable of n draws and success rate µlo.) In particular, the searching hn-buyer knows that

conditional on trading (Nlo ≥ 1), there are in expectation E[Nlo | Nlo ≥ 1 ] = nµlo/(1 − (1 − µlo)n)

lo-sellers and each of them expects ᾱ∆. Indeed, Ā = E[Nlo | Nlo ≥ 1 ]ᾱ .

Endogenous bargaining power. When an hn-buyer is searching, he expects to split the surplus ∆

with Nlo potential sellers according to the fractions of (1 − Ā) v.s. Ā, which are reminiscent of

the bargaining power parameters in a Nash bargaining game, just like in DGP. There are three

key differences. First, these fractions are endogenous in the current model, depending on the

equilibrium population sizes of counterparties. Second, in SMS, a searching investor’s bargaining

power is one-to-many, as he contacts multiple potential counterparties. Third, not only the investor

type (hn-buyer v.s. lo-seller), but also the “role” in the search (whether the investor is searching

or is contacted), matters. For example, a searching hn-buyer gets a fraction of (1 − Ā). But when

being contacted, he knows he is competing with the (n − 1) potential others and expects to get a

fraction β̄ (Equation 7). To compare, in DGP for example, the bargaining power parameters are

exogenous, are always one-to-one (bilateral), and do not depend on investors’ roles in the search.

Price dispersion. Proposition 1 and Corollary 1 imply that there is price dispersion in equilibrium,

in the form of random markups or markdowns. Such dispersion is due to the unknown number

of competitors, an intrinsic friction in SMS: The contacted investors’ types are unknown to the

searcher and to each other. In the current stylized model, such types boil down to the investors’
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preferences for the asset (θ ∈ {h, l}) and their inventory positions (x ∈ {0, 1}). In real-world

trading, investors’ other characteristics (like risk-aversion, patience, wealth, etc.) can enrich their

possible types. As long as such a friction remains, price dispersion will be a robust feature in

equilibrium. Empirical evidence supports this equilibrium result. For example, Hendershott and

Madhavan (2015) document a significant dispersion in dealers’ responding quotes. Section 4.1

explores in more details the positive implications of such price dispersion.

3.3 Value functions

This subsection studies the stationary equilibrium value functions Vσ∈T . Consider first an ho-type

investor (who does not want to trade). The Hamilton-Jacobi-Bellman (HJB) equation writes as

0 = 1 + λd · (Vlo −Vho) − rVho .(9)

Over a short period dt , the ho-investor gets a flow utility 1dt from holding the asset; plus, with

intensity λddt he switches type to lo and his value changes by Vlo −Vho; minus the depreciation of

rVhodt due to discounting. Similarly, an ln-investor has HJB equation

0 = λu · (Vhn −Vln) − rVln .(10)

Consider next an lo-seller. Just like before, over dt unit of time, his value increases by (1 − δ )dt

due to the asset holding. It may also change by Vho − Vlo with intensity λudt due to a preference-

switching shock. The value also reduces by rVlodt due to discounting. Apart from these three,

trading also affects his value. A gain of (1− B̄)∆ is expected if the lo-seller is actively searching and

finds at least one counterparty (Equation 8), which happens with intensity ρ · (1 − (1 − µhn)n)dt . A

gain of ᾱ∆ is expected if the lo-seller is contacted by a searching hn-buyer (Proposition 1), which

occurs with intensity µhnρndt—there are in total a measure of µhnρdt hn-buyer searching, each

contacting n investors. Searching and contacted combined, the total instantanous expected trading
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gain can be written as ζlo∆, with coefficient

ζlo :=ρ · (1 − (1 − µhn)n)
(
1 − B̄

)
+ ρµhnnᾱ

=
[
(1 − (1 − µhn)n) − µhnn · (1 − µhn)n−1 + µhnn · (1 − µlo)n−1]ρ.

This coefficient ζlo represents an lo-seller’s “expected trading gain intensity.” The above leads to

the following HJB equation for an lo-seller

0 = (1 − δ ) + λu · (Vho −Vlo) + ζlo∆ − rVlo .(11)

Similarly, an hn-seller has

0 = λd · (Vln −Vhn) + ζhn∆ − rVhn,(12)

where the expected trading gain intensity is

ζhn :=ρ · (1 − (1 − µlo)n)
(
1 − Ā

)
+ µloρnβ̄

=
[
(1 − (1 − µlo)n) − µlon · (1 − µlo)n−1 + µlon · (1 − µhn)n−1]ρ.

Note that aggregating across all trading investors, µloζlo∆ + µhnζhn∆ = (νlo + νhn)∆, which is the

total gains from trade per unit of time (Equation 6).

Recall that ∆ is a linear combination of the value functions {Vσ }. Thus, equations (9)-(12)

constitute a four-equation (linear) system that can solve for the four unknowns. The proposition

below establishes the results in terms of the total gains from trade and the reservation prices.

Proposition 2 (Equilibrium value functions). There exists a unique stationary equilibrium,

where the value functions are the solution to the linear equation systesm (9)-(12). The total

trading gain is

∆ =
δ

r + λd + λu + ζlo + ζhn
.
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The reservation prices for an hn-buyer and for an lo-seller are, respectively,

Rhn = Vho −Vhn =
1
r
− δ

r

λd + ζhn
r + λd + λu + ζlo + ζhn

and

Rlo = Vlo −Vln =
1 − δ

r
+
δ

r

λu + ζlo
r + λd + λu + ζlo + ζhn

=
1
r
− δ

r

r + λd + ζhn
r + λd + λu + ζlo + ζhn

.

To complete the analysis, two conjectures need verifying. First, using the expressions above,

it is easy to verify the conjecture that 0 ≤ Rlo ≤ Rhn; i.e., the gains from trade is indeed positive.

Second, theho- and ln-investors should stay out of trading. If one did switch to trading, his expected

trading price p would always fall in between the reservationn prices, i.e., Rlo = Vlo − Vln ≤ p ≤

Vho −Vhn = Rhn. But it then follows that Vho ≥ Vhn + p and Vln ≥ Vlo − p; i.e., no individual ho or

ln-investors will deviate to trading.

4 Implications

This section explores the properties of the stationary equilibrium found above. Section 4.1 studies

the implied price dispersion in equilibrium. Section 4.2 studies how the two search technologies,

intensity ρ and capacity n, affect market quality possibly differently.

4.1 Price distribution

This subsection studies the equilibrium price distribution, following Corollary 1. Both thehn-buyer

initiated and the lo-seller initiated trades’ price distributions share the same c.d.f.G(·;n, µ). Figure 1

illustrates it with varying search capacity n in Panel (a) and varying response rate µ in Panel (b).

It should be noted that in equilibrium, response rates µlo and µhn are endogenous of the search
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capacity n (among other primitive parameters). For illustration purpose, in plotting Figure 1, the

response rate µ and n are treated as exogenous of each other.

Several observations readily follow. First, all else equal, a larger search capacity n and a higher

response rate µ both lead to more competitive pricing—there is more probability mass falling on

very small markups(downs). In the extreme of either n ↑ ∞ or µ ↑ 1, Bertrand competition obtains.

More rigorously, comparing two assets with different search capacity n (or response rate µ), the one

with higher n and/or higher µ should see its markup(down) distribution first-order stochastically

dominates the other’s. Hendershott and Madhavan (2015) report that traders query between 24 and

28 dealers in the corporate bond market and that this number is similar for both investment-grade

and high-yield bonds. They also report that the response rate is higher for investment-grade bonds.

One can therefore test the model by examining whether the ask prices of investment-grade bonds

first-order stochastically deominates the ask of high-yield bonds (and the opposite for bid prices).

Second, there is price dispersion. At each instant t , the trading prices follow a non-degenerate

distribution as characterized by Corollary 1. This prediction is novel, due to SMS, in that such

dispersion arises even when all quoters are homogeneous (c.f., Hugonnier, Lester, and Weill,

2016; Shen, Wei, and Yan, 2018). Panel (a) of Figure 2 illustrates such dispersion by plotting the

markup(down) volatility against the response rate µ ∈ (0, 1), with selected fixed search capacity n.

It can be seen that the markup volatility is first increasing and then decreasing. To understand the

hump-shape, consider the two extremes: When µ ↓ 0, the (contacted) quoting investor knows he

is a monopolist and will excert full market power by charging a markup(down) exactly equal to

the surplus ∆ and there is no price dispersion. When µ ↑ 1, the quoting investor knows almost

surely that he is competing with someone else and by Bertrand competition, there is always zero

markup(down) in equilibrium, hence no price dispersion. One can test this pattern by comparing

the markup(down) dispersion across assets where the response rates are different.

Third, the markup(down) distribution is skewed. Panel (b) of Figure 2 shows the skewness with

a selection of search capacity n and a range of response rate µ. (The plotted is the nonparametric
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(a) Varying search capacity n
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(b) Varying response rate µ
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Figure 1: Distribution of markup(down). This figure plots the distribution of the random markup(down)
across all trades. Panel (a) plots the c.d.f. G(·) with varying search capacity n, and Panel (b) with varying
response rate µ. The response rate is set to µ = 0.1 in Panel (a). The search capacity is set to n = 25 in
Panel (b).
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Figure 2: Dispersion and skewness of markup(down). Panel (a) plots the volatility of the markup(down)
as a percentage of the total surplus ∆ against the response rate µ. Panel (b) plots the skewness of the
markup(down) distribution. In both panels, the search capacity ranges in n ∈ {5, 10, 15, 30}.
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skew, i.e., the difference between the mean and the median, scaled by the standard deviation.)

Consistent with the hump-shape volatility in Panel (a), the skewness also peaks for moderate level

of response rate. Recall that lo-sellers mark up their quotes by A∆ while hn-buyers mark down by

B∆. As a result, the ask prices are positively skewed while bid prices are negatively skewed. One

can empirically test this prediction by examining the skewness of the ask and bid quotes separately.

4.2 Search technology and market quality

There are two parameters governing the search technology in the model: the intensity ρ and the

capacity n. This subsection highlights how they affect market quality differently. The discussion

provides generic intuitions, but to avoid repetition, the effects are only illustrated for a sellers’

market, where the asset is in short supply: s < η = µho + µhn.

Population sizes. Both search technologies have the same effect of reducing population sizes.

That is, both µhn and µlo decrease with ρ and withn. This is because better technologies imply better

matching between buyers and sellers, thus fewer investors remaining waiting to trade. Panel (a)

of Figure 4 shows the effect for the buyers µhn and Panel (b) for the sellers µlo. Recall that under

the chosen parametrization, the asset is in short suply, s = 0.4, lower than the high-valuation

investors η = µho + µhn = 0.5. The isoquant curves in the two panels therefore differ by exactly

0.1 = η − s = µhn − µlo. (If the asset is in excess suply, still both µhn and µlo decrease with ρ and

with n, but the isoquants differ by s − η = µlo − µhn.)

Prices. Panel (a) of Figure 4 shows how the two search technologies affect the average trading

price. An increase in the search intensity ρ, moving up along any vertical cut, always monotonically

increases the trading price (toward the Walrasian price 1/r in this sellers’ market). In contrast, an

increase in the capacity n can have nonmonotone impacts: for moderate and small ρ, moving right

along a horizontal cut, the price first rises and then dips. It turns out these price patterns inherit

from investors’ reservation values, as demonstrated in Panel (b) of Figure 4. This is because the
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(a) Buyers, µhn
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(b) Sellers, µlo
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Figure 3: Seach technology and population sizes. This figure shows how the two search technology
parameters, intensity ρ and capacity n, affect investor population sizes. Panel (a) plots the contour of buyer
population µhn against varying ρ and n, and Panel (b) the seller population µlo . The primitive parameters
are s = 0.4, λd = λu = 1.0, δ = 1.0 and r = 0.1.
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(b) Investors’ reservation values
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Figure 4: Seach technology and prices. This figure shows how the two search technology parameters,
intensity ρ and capacity n, affect prices. Panel (a) plots the average trading price. Panel (b) plots investors’
reservation values, solid line for a buyer’s and dashed line for a seller’s. The primitive parameters are s = 0.4,
λd = λu = 1.0, δ = 1.0 and r = 0.1.
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trading price always falls between buyers’ and sellers’ reservation value band; see Equation (5).

To understand the patterns, recall from Proposition 2 that

Rlo =
1 − δ

r
+
δ

r

λu + ζlo
r + λd + λu + ζlo + ζhn

; and Rhn =
1 − δ

r
+
δ

r

r + λu + ζlo
r + λd + λu + ζlo + ζhn

.

The responses of the reservation values to the two technologies are only through the endogenous

trading gain intensities, ζlo and ζhn, highlighted in blue above. The discussion below explains how

they are differently affected by ρ and n.

Recall from Figure 3 that the populations µhn and µlo drop with the search intensity ρ. Yet

the population difference always remains constant: µhn − µlo = η − s (Equation 1 and 3). Since

the parametrization is a sellers’ market, η − s > 0; i.e., there are always more buyers than sellers.

This means that as ρ increases, both hn- and lo-types will find it more difficult to get matched, but

even more so for an hn-buyer than for an lo-seller.3 Therefore, a seller’s trading gain intensity ζlo

increases with ρ, while a buyer’s ζhn drops. Hence, the reservation values monotonically increase

with the search intensity ρ (larger numerator but smaller denominator).4

The search capacity n has two different effects.

1. (Matching) A larger capacity n improves matching, tilting trading gain toward the short side

of the market. (This is the same effect as the search intensity ρ has, as discussed above.)

2. (Competition) An individual investor does not necessarily appreciate a higher n:

(+) If he is actively searching, a larger n enables him to reach more potential counterparties;

(-) If he is contacted for quote, however, a larger n exposes him to more fierce competition.

For the long side of the market, the (+) effect dominates because there is little active searching

from the small population of the short side. Reversely, for the short side, the (-) effect

dominates because they are contacted by the long side very often.

3 For example, in Figure 3, the highest isoquants in the two panels imply a buyer-to-seller ratio of µhn : µlo =
0.26 : 0.16 ≈ 1.6, while as technologies improve, the ratio surges to µhn : µlo = 0.11 : 0.01 = 11.0 for the lowest
isoquants plotted.

4 If the asset is in excess supply, i.e., η − s < 0, then the reverse happens: There are always more sellers than
buyers. In such a buyers’ market, buyers’ trading gain intensity ζhn increases with ρ but sellers’ ζlo decreases. As such,
the reservation values drop with ρ toward the Walrasian price of (1 − δ )/r . This effect is consistent with DGP.
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(a) Average best bid and ask quotes
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(b) Bid-ask “spread” (relative to trading gain ∆)
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Figure 5: Bid and ask quotes. This figure shows how the two search technology parameters, intensity ρ and
capacity n, affect bid and ask quotes. Panel (a) plots the average best bid (dashed) and ask (solid). Panel (b)
plots the average difference between the ask and the bid, as a proportion of the trading gain ∆. The primitive
parameters are s = 0.4, λd = λu = 1.0, δ = 1.0 and r = 0.1.

Under the chosen parametrization, hn-buyers are on the long side and lo-sellers the short side of the

market. The matching effect of n indicates a larger ζlo but smaller ζhn, just like ρ. The competition

effect implies the opposite: hn-buyers expect a higher trading gain intensity ζhn, while lo-sellers

see a lower ζlo. Taken together, therefore, n could have a negative effect on the reservation values

and the price, depending on whether the competition effect dominates.5

Such “competition effects” of the search capacity n is novel to the literature. Recall the

interpretation of n from Remark 2. On the institution side, this result implies that investments in

execution (trading desk) have nonmonotone effects on asset prices. On the platform side, the design

of RFQ protocols can also affect asset prices nonmonotonically.

5 Indeed, it can be seen that the price and the reservation values start to drop with n in Figure 4 only when the
population isoquants in Figure 3 is flattening, i.e., when the matching effect of n diminishes. For example, consider
horizontal cuts at ρ ≈ 2 in the four panels. The price and the reservation values only start to decrease from about
n ≥ 11, which is the same range of n where the population isoquants µhn = 0.14 and µlo = 0.04 start to flatten.
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“Crossing” bid and ask quotes. Panel (a) of Figure 5 plots the average best ask (solid line)

and the bid (dashed). From Equation (8), the average best ask is the seller’s reservation value Rlo

marked up by ᾱ∆; and the best bid is the buyer’s reservation Rhn marked down by β̄∆. As both are

markup/down on the reservation values, unsurprisingly, the patterns are similar to Figure 4.

What is perhaps surprising is that the ask quotes are not always above bids: The bid isoquant

(dashed line) crosses the ask isoquant (solid line). To visualize this feature more directly, Panel (b)

of Figure 5 plots the bid-ask “spread” as a proportion of the trading gain ∆:

Average (relative) bid-ask spread =
1
∆

[ (
Rlo + Ā∆

)
−
(
Rhn − B̄∆

) ]
= Ā + B̄ − 1.

It can be seen that while the spread increases with the intensity ρ (along any vertical cut), it

decreases with the capacity n (along any horizontal cut). Notably, for sufficiently large n, the bid

and the ask cross (ask below bid) and the average spread becomes negative.

The search intensity ρ widens the bid-ask spread because of improved matching. Higher ρ

leaves fewer investors remaining eager to trade in the steady state (Figure 3). When contacted for

quote, a lo-seller knows that higher ρ means less competition from other (n − 1) contacted. As

such, he quotes higher markup by raising Ā. Likewise, a contacted hn-buyer marks his bid further

down by raising B̄. The bid-ask spread, therefore, widens with intensity ρ.

A larger search capacity also improves matching (Figure 3) just like ρ. But there is a coun-

tereffect: intensifying competition among quoting investors. Knowing there are more competitors

(larger n), a contacted seller (buyer) reduces their markup(down), narrowing the spread. In the

extreme of perfect competition, investors quote their reservation prices without any markup(down),

i.e., Ā = B̄ = 0, implying a spread of Ā+ B̄ − 1 = −100% of the trading gain ∆. A negative bid-ask

“spread” thus arises with large capacity n. (This same intuition applies irrespect of whether the

asset is in short or excess supply.)

The crossing of bid and ask is a unique prediction of the model. In particular, such crossing arises

only through the implicit competition among homogenous quoters. To contrast, for example, in
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bilateral-bargain models like DGP, the bid-ask spread manifests when dealers are introduced and is

the consequence of their exogenous bargaining power. Since the dealer’s rent from intermediating

investors is non-negative, the bid-ask spread is always positive. Figure 6 of Hau, Hoffmann,

Langfield, and Timmer (2017) shows that such negative spreads do prevalently exist,for both RFQ

platform users and non-users.

Two implications of such crossing quotes are worth highlighting. First, Panel (b) of Figure 5

provides a testable prediction: Such crossing are more prominently seen, in terms of magnitude,

when the search capacity n is large (e.g., when the RFQ platform allows so). Second, the bid-ask

spread in OTC markets (or search markets in general) can serve as a very poor measure for market

illiquidity. Following DGP, the market illiquidity can be measured by the price discount, i.e., the

difference between the Walrasian price (1/r under a sellers’ market) and the average trading price.

Panel (a) of Figure 4 suggests that such illiquidity discount is largest when the search intensity ρ

is low. In particular, for moderate ρ, even when the search capacity n is huge (e.g., n ≥ 100),

the illiquidity discount is still significant, roughly 40% of the Walrasian price (1/r = 10 in the

numerical illustration). However, Panel (b) of Figure 5 shows that the bid-ask spread always reduces

with n, seemingly suggesting a more liquid market.

5 How to search

In real-world trading, investors can choose how to deal with potential counterparties. For example,

upon receiving a trading order, the trading desk of an institution can all up a dealer and spend time

and effort bargaining the trading terms, or call up many potential counterparties at the same time,

without bargaining, just looking for quotes. Effectively, investors should be able to choose between

BB and SMS. This section explores such endogenous choices.

Specifically, investors still search actively with intensity ρ. But upon searching, an investor can

choose SMS as modeled above in Section 2, or BB, modeled after DGP: If one chooses BB, he
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randomly finds (is randomly matched with) another investor. If the two happen to form a pair of

buyer and seller, they exchange the asset and split the gains from trade according to their exogenous

bargining power, q ∈ [0, 1] for the seller and 1 − q for the buyer. Otherwise, there is no trade.

The analysis below focuses on the symmetric case of q = 1/2 for simplicity. The other model

ingredients remain the same as in Section 2.

The objective is two-fold. First, Section 5.1 analyzes the conditions under which investors

prefer one search technology over the other. Can new trading protocols, like Request-for-Quote (in

the spirit of SMS), completely replace traditional bilateral bargaining? Second, Section 5.2 studies

the welfare implication. Which search technology is more efficient (in terms of asset allocation)?

Do investors opt for the more efficient one? What are the policy and market design implications?

5.1 Choosing between SMS and BB

As in Section 3, the analysis focuses on a stationary equilibrium. It proceeds in three steps:

investors’ optimal choices between SMS and BB, population dynamics, and value functions.

Choosing search technology. Consider an lo-seller for example. Upon active searching, he

chooses between SMS and BB, possibly with a mixed-strategy: Denote byφlo ∈ [0, 1] the probability

of an lo-seller choosing SMS. The choice depends on the comparison between the expected gains.

Using SMS, a searching lo-investor expects

(1 − (1 − µhn)n)︸             ︷︷             ︸
Probability of finding at least one buyer

Conditional expected trading gain; Equation (8)︷    ︸︸    ︷
(1 − B̄)∆ =

(
1 − (1 − µhn)n − nµhn · (1 − µhn)n−1

)
∆.

Using BB, he finds a buyer with probability µhn and via Nash bargaining (see details in DGP) his

expected gain is

µhn︸︷︷︸
Probability of finding a buyer

Trading gain under Nash bargaining︷︸︸︷
q∆ .
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Under the assumption of equal bargaining power, q = 1/2. Define an auxiliary function

h(µ;n) := 1 − (1 − µ)n − nµ · (1 − µ)n−1 − µ

2
,

which the difference between the above two expected gains. Therefore, an lo-seller’s optimal choice

of φlo, and similarly φhn for an hn-buyer, is

φlo



= 1, if h(µhn;n) > 0

∈ [0, 1], if h(µhn;n) = 0

= 0, if h(µhn;n) < 0

and φhn



= 1, if h(µlo;n) > 0

∈ [0, 1], if h(µlo;n) = 0

= 0, if h(µlo;n) < 0

.(13)

Population dynamics. In a stationary equilibrium, the population sizes µho, µhn, µlo, and µln

are constant and the analysis is similar to Section 3.1. In particular, Equations (1)-(3) still hold.

The fourth condition can be found via, e.g., the inflows and outflows from the lo-type. At each

instant dt , a measure of µloρφlodt of sellers will be actively searching with SMS but only a fraction

of 1 − (1 − µhn)n of them will find at least one buyer. This results in an outflow of

νlodt := (1 − (1 − µhn)n)µloρφlodt .

Similarly, due to the buyers who use SMS, there is an outflow of

νhndt := (1 − (1 − µlo)n)µhnρφhndt .

In addition, trades from BB result in an outflow of

ρµloµhn · (1 − φlo)dt + ρµhnµlo · (1 − φhn)dt = (2 − φlo − φhn)ρµloµhndt .

The expression is similar to the one in DGP, except the probabilities φlo and φhn of using SMS are

now accounted for. Finally, due to type switches, there is an inflow of µhoλddt and an outflow of

µloλudt . Taken together,

−νlo − νhn − (2 − φlo − φhn)ρµloµhn − µloλu + µhoλd = 0(14)
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must hold in a stationary equilibrium. Compared to the flow equation (4), there are two differences:

First, the trading volume due to SMS, νlo and νhn, are redefined by scaling with the endogenous

choice for SMS, φlo and φhn, respectively. Second, there is an additional outflow of (2 − φlo −

φhn)ρµloµhn due to BB trading. The above flow equation converges to Equation (4) if φlo = φhn = 1

and reduces to DGP if φlo = φhn = 0.

Proposition 3 (Population sizes and choice of search technology). There exists a unique

solution {µho, µhn, µlo, µln,φlo,φhn} ∈ [0, 1]6 to Equations (1)-(3) and (13)-(14). As the search

intensity ρ increases, all of {φlo,φhn, µlo, µhn} weakly decrease.

Panel (a) and (b) of Figure 6 graphically illustrate how the equilibrium usage of SMS, φlo

and φhn, and the equilibrium population sizes, µlo and µhn, respond to the search technologies ρ

and n. In Panel (a), when the intensity ρ increases, both hn-buyers and lo-sellers use less SMS but

more BB. The opposite is true for the capacity n, as shown in Panel (b).

The contrast roots in the endogenous bargaining power under SMS (v.s. the exogenous q under

BB); see the discussion on p. 14. Consider an investor who is actively searching. His trading gain

share in BB is half (q = 1/2), unaffected by the technologies. But if he chooses SMS, technologies

matter: When ρ becomes higher, matching improves and the investor knows that his trading terms

have worsened, as the contacted counterparties face less competition. As shown in Panel (a), this

effect leads to weakly less usage of SMS. When n is higher, the investor knows that the more

fierce competition among his counterparties will lead to better trading terms for him. As shown in

Panel (b), this effect leads to weakly higher usage of BB.

In terms of population sizes, SMS always matches more investors than BB (as long as n ≥ 2).

As such, when investors reduce usage of SMS, both µlo and µhn reduce with ρ at a slower pace, as

shown in Panel (c). In Panel (d), investors switch from BB to SMS as capacity n increases. For

comparison, the gray lines in Panel (c) and (d) plot the population sizes if all investors always stick

to SMS.
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(a) Usage of SMS, varying ρ
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(b) Usage of SMS, varying n
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(c) Population sizes, varying ρ
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(d) Population sizes, varying n
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Figure 6: Choice of search technology. This figure plots how search intensity ρ and capacity n affect
investors usage of SMS (over BB) in Panel (a) and (b), and population sizes in Panel (c) and (d). The light
gray lines in Panel (c) and (d) describe the results in an economy where all investors always use SMS. The
stationary equilibrium studied follows Section 5. For Panel (a) and (c), the search capacity is fixed at n = 4.
For Panel (b) and (d), the search intensity is fixed at ρ = 5. The other primitive parameters are λd = λu = 1.0,
s = 0.48, r = 0.1, and δ = 1.0.
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Value functions. To characterize the equilibrium, it remains to find the value functions for the

four types of investors. The stationary value functions are determined by the HJB equation systems.

For ho- and ln-investors, who do not trade, their HJB equations remain the same as Equation (9)

and (10). Consider next an lo-seller, who derives value (1 − δ )dt from the asset held over dt . In

addition, his value may also change by Vho −Vlo with intensity λudt due to a preference shock. It

decreases by rVlodt due to discounting. Four trading-related value changes are also expected: (1)

With intensity ρφlo · (1−(1− µhn)n)dt , he searches with SMS and finds at least one buyer, expecting

a gain of (1 − β̄)∆. (2) With intensity ρφhnndt , he is contacted by a buyer via SMS, expecting ᾱ .

(3) With intensity ρ · (1 − φlo)µhndt , he searches with BB and bargains with a buyer to get q∆. (4)

With intensity ρ · (1−φhn)µhndt , he is contacted by a buyer with BB, expecting to get q∆. Combine

these four and the total expected value change due to trading can be written as ζlo∆, with coefficient

ζlo :=ρ · φlo(1 − (1 − µhn)n)(1 − B̄) + ρφhnnᾱ + ρ · (2 − φlo − φhn)µhnq

=
[
φlo

(
1 − (1 − µhn)n − µhnn(1 − µhn)n−1

)
+ φhnµhnn(1 − µlo)n−1 + (2 − φlo − φhn)µhnq

]
ρ.

Like before, ζlo is an lo-seller’s expected trading gain intensity. Therefore, a lo-investor’s HJB

equation has the same form in Equation (11), with ζlo redefined by the above. Similarly, an hn-

buyer has HJB equation with the same form shown in Equation (12), but with his trading gain

intensity ζhn given by

ζhn :=ρ · φhn(1 − (1 − µlo)n)(1 − ᾱ) + ρφlonβ̄ + ρ · (2 − φhn − φlo)µlo(1 − q)

=
[
φhn

(
1 − (1 − µlo)n − µlon(1 − µlo)n−1

)
+ φloµlon(1 − µhn)n−1 + (2 − φhn − φlo)µlo(1 − q)

]
ρ.

The four HJB equations, forming a linear equation system, then uniquely pin down the four

stationary value functions, with the same functional form as stated in Proposition 2, except that ζlo

and ζhn are replaced by those derived above.
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5.2 Efficiency and welfare

Welfare in this economy is easy to calculate: At any time t , the total utility flow is µlo ·(1−δ )+µho ·1.

Substituting µho = s − µlo, welfare as the present value of this perpetuity can be written as

w =
1
r
(s − µloδ ),

which decreases in the population of lo-investors. Intuitively, here µlo measures the inefficient

allocation. The larger is the population of µlo, the less efficient is the allocation.6 Clearly, welfare

only depends on the equilibrium population size µlo. The primitive parameters—type dynamics λd

and λu , search intensity ρ, search capacity n for SMS, and a seller’s bargaining power q—do not

directly show up in welfare, but only through µlo, because they only determine the split of trading

gains. A social planner does not care about such splits.

Corollary 2 (Efficiency: SMS v.s. BB). SMS improves allocative efficiency. Mathematically,

cateris paribus, welfare w is monotone increasing in the usage of SMS, φlo and φhn.

For a social planner, the only difference between SMS and BB is the number of investors one contacts

when searching. Under SMS, n potential investors are reached, while only one is tried under BB.

Essentially, SMS by construction has a more extensive search capacity than BB (multilateral v.s.

bilateral). As such, when SMS is used more often, there will be less inefficient allocation, improving

welfare. If he could, a social planner would maximize SMS usage by setting φlo = φhn = 1.

However, individual investors do not have the incentive to always use SMS. This is because a

searching investor cares about not only the probability of finding a counterparty, but also how the

trading gain is split with the counterparty. Conditional on trading, under SMS, one’s expected gain

depends on the competition among the n contacted investors. Under BB, the trading price depends

on investors’ exogenous bargaining power. Even when SMS is made available for all investors,

some might still favor BB if their bargaining power is much higher relative to the one implied by
6 The first-best allocation is achieved when all supply is held by the high type investors. (If there is excess supply,

the remaining is given to the low types). Thus, when s < η, efficiency implies µlo = 0, µho = s, µhn = η − s, and
µln = 1 − η. Similarly, when s ≥ η (excess supply), efficiency implies µlo = s − η, µho = η, µhn = 0, and µln = 1 − s.
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(a) Varying search intensity ρ
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Figure 7: Welfare as allocative efficiency. This figure plots how welfare—allocative efficiency—is affected
by search intensity ρ and capacityn. The light gray lines describe the results in an economy where all investors
always use SMS. For Panel (a), the search capacity is fixed at n = 4. For Panel (b), the search intensity is
fixed at ρ = 5. The other primitive parameters are λd = λu = 1.0, s = 0.48, r = 0.1, and δ = 1.0.

SMS.

Figure 7 illustrates such inefficiency. For sufficiently high search intensity ρ, Panel (a) shows

that the welfare loss (the gap between the blue and the gray lines) manifests because some investors

switch from SMS to BB (Panel a and c in Figure 6). This result can be generalized:

Corollary 3 (Inefficiency due to BB). For high search intensity ρ, there are always some

investors who do not use SMS, resulting in welfare inefficiency.

The corollary has both policy and market design implications. Under the proposed model inter-

pretation (Remark 2), the search intensity is determined by an institution’s back office, who needs

to do due diligence, risk management, and regulatory compliance to approve trading. Therefore,

regulations that streamlines the back office process can improve search intensity ρ. However, such

“speeding up” of trading might result in more BB, rather than the more efficient SMS, thus hurting
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allocative efficiency.

Likewise, for relatively low search capacity n, Panel (b) of Figure 7 shows there is inefficient

allocation as not all investors use SMS. The model interprets the search capacity n as a parameter

determined by different platforms. In an RFQ system, this is the maximum number of quotes a

searching institution can obtain. The above result suggests that platforms’ trading protocol design

affects investors’ choice of searching method and, ultimately, allocative efficiency. Welfare can

probably be improved if RFQ systems allow more quotes from more participants simultaneously.

6 Conclusion

This paper studies “simultaneous multilateral searching” in over-the-counter markets. The idea is

that an actively searching investor can reach out to a number of potential counterparties simulta-

neously, solicit quotes from them, and then trade with the one with the best quote. This searching

mechanism differs from the conventional “bilateral bargaining,” where a searching investor spends

effort (and time) negotiating terms with the single counterparty once matched. Such simultaneous

multilateral searching has been popularized in practice recently through trading protocols called

“Request-for-Quote.”

A steady state equilibrium is characterized in the framework of the search literature (Duffie,

Gârleanu, and Pedersen, 2005). In particular, once contacted, investors are found to follow a random

quoting strategy, which leads to empirically documented patterns like price dispersion, skewness,

etc. In addition, two parameters underlying simultaneous multilateral searching, search intensity

and capacity, are analyzed in terms of their, sometimes contrasting, implications for market quality.

The key insight revealed is that how investors’ trading gain is split between the active searcher and

the passively contacted is an endogenous equilibrium outcome, as opposed to the exogenous split

according to Nash bargaining powers in the bilateral bargaining literature.

Allowing investors to endogenously choose between bilateral bargaining and simultaneous

33



multilateral searching, the model shows potential intrinsic inefficiency in terms of asset allocation.

This tension is associated with policy (complexity of compliance) and market design (Request-for-

Quote trading protocol). Notably, a more streamlined compliance process might worsen allocation

as investors will then have incentive to do more often the less efficient bilateral bargaining, rather

than the more efficient simultaneous multilateral searching.
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Appendix: Collection of proofs

Lemma 1

Proof. Equations (1)-(3) are linear in the four population sizes. Fixing, for example µlo, the other
three population sizes can therefore be expressed uniquely as linear functions of µlo and can be
substitued into Equation (4), yielding

µloλu + (1 − (1 − µlo − η + s)n)µloρ + (1 − (1 − µlo)n)(µlo + η − s))ρ − (s − µlo)λd = 0,

which is the equation of the only unknown µlo. It is easy to verify the left-hand side of the above
equation is strictly increasing in µlo, implying that there is at most one solution. The left-hand side
is also continuous, strictly negative at µlo = 0 and strictly positive at µlo = s. Therefore, a unique
solution of µlo ∈ (0, s) exists. The other three population sizes then also uniquely follow. □

Proposition 1

Proof. The proof only focuses on a contacted lo-seller’s symmetric quoting strategy. The same
analysis applies to hn-buyers and is omitted. Consider first the trivial case of n = 1. A contacted
seller then knows that he is the only one quoting. It is then trivial that he will quote the highest
possible ask price, i.e., the buyer’s reservation value Rhn = Rlo + ∆. This can be viewed as a
degenerate mixed-strategy with c.d.f. F (α) converging to a unity probability mass at α = 1 as stated
in the proposition.

Next consider n ≥ 2. Given the reservation values, it suffices to restrict the ask quote within
[Rlo,Rhn]. Without loss of generality, a seller’s strategy can be written as Rlo + α∆ by choosing
α ∈ [0, 1]. Suppose α has a c.d.f. F (α) with possible realizations [0, 1] (some of which might have
zero probability mass). The following four steps pin down the specific form of F (·) so that it sustain
a symmetric equilibrium.
Step 1: There are no probability masses in the support of F (·). If at α∗ ∈ (0, 1] there is some
non-zero probability mass, any seller has incentive to deviate to quoting with the same probability
mass but at a markup level inifnitesimally smaller thanα∗: This way, he converts the strictly positive
probability of tieing with others at α∗ to winning over others. (The udnercut costs no expected
revenue as it is infinitesimally small.) If at α∗ = 0 there is non-zero probability mass, again any
seller will deviate, this time to a markup slightly above zero. This is because allocating probability
mass at zero markup brings zero expected profit. Deviating to a slightly positive markup therefore
brings strictly positive expected profit. Taken together, there cannot be any probability mass in
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α ∈ [0, 1]. Note that any symmetric-strategy equilibria are ruled out.
Step 2: The support of F (·) is connected. The support is not connected if there is (α1,α2) ⊂ [0, 1]
on which there is zero probability assigned and there is probability density on α1. If this is the case,
then any investor will deviate by moving the probability density on α1 to any α ∈ (α1,α2). Such a
deviation is strictly more prifitable because doing so does not affect the probability of winning (if
one wins at bidding α1, he also wins at any α > α1) and because α > α1 is selling at a higher price.
Step 3: The upper bound of the support of F (·) is 1. The logic follows Step 2. Suppose the upper
bound is α∗ < 1. Then allocating the probability density at α∗ to 1 is a profitable deviation: It does
not affect the probability of winning and upon winning sells at a higher price.
Step 4: Deriving the c.d.f. F (·). Suppose all other sellers, when contacted, quote according to some
same distribution F (·). Consider a specific seller called i. Quoting Rlo +α∆, i gets to trade with the
searching buyer if and only if such a quote is the best that the buyer receives. The buyer examines
all quotes received. For each of the n − 1 contacts, with probability 1 − µlo the person is not a
seller and in this case i’s quote beats the no-quote. With probability µlo, the contacted is indeed
another lo-seller, who quotes with markup α ′. Then, only with probability P(α < α ′) = 1 − F (α)
will i’s quote win. Taken together, for each of the n−1 potential competitor, i wins with probability
(1− µlo)+ µlo(1− F (α)) and he needs to win all these n − 1 times to capture the trading gain of α∆.
That is,i expects a profit of

(1 − µloF (α))n−1α∆.

In particular, at the highest possible markup α = 1, the above expected profit simplifies to

(1 − µlo)n−1∆,

because F (1) = 1. In a mixed-strategy equilibrium, i must be indifferent of quoting any markup in
the support. Equating the above two expressions and solving for F (·), one gets the c.d.f. stated in the
proposition. It can then be easily solved that the lower bound of the support must be at (1− µlo)n−1,
where F (·) reaches zero. This completes the proof. □

Proposition 2

Proof. Note that the trading gain is ∆ = Rhn − Rlo = (Vho −Vhn) − (Vlo −Vln), a linear combination
of the four unknown value functions. The four equations (9)-(12), therefore, is a linear equation
system that uniquely pins down the four unknowns. □
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Proposition 3

Proof. Consider the existence first. Note from Equations (1)-(3) that µhn = µlo + η − s and
µho = s − µlo. Substitute these expressions into the flow equation (14) and define the left-hand side
of the equation as

f (µlo) := − (1 − (1 − µlo − η + s)n)µloρφlo − (1 − (1 − µlo)n)(µlo − η + s)ρφhn
− (2 − φlo − φhn)ρµlo · (µlo + η − s) − µlo(λu + λd) + sλd .(15)

It is easy to see that f (µlo) is monotone decreasing in µlo and f (0) = sλd > 0 > f (s). Therefore,
there always exists some µlo ∈ (0, s) such that f (µlo) = 0, regardless of the values of φlo and φhn.
As 0 < µlo < µhn, Equations (1)-(3) ensure that {µhn, µho, µln} ∈ (0, 1)3 and Equations (13) holds.

Consider next the uniqueness. The idea is to show that fixing all other primitive parameters,
there is one and only one set of {µho, µhn, µlo, µln,φlo,φhn} that solves the six equations for any
ρ ∈ (0,∞). To begin with, rewrite the flow equation (14) as f (µlo,φlo,φhn, ρ) = 0. It is easy to
see that f (·) is monotone decreasing in µlo, in φlo, in φhn, and in ρ. By implicit function theorem,
therefore, ∂µlo/∂ρ < 0, ∂φlo/∂ρ < 0, and ∂φhn/∂ρ < 0.

When ρ ↓ 0, f (·) = 0 implies that µlo ↑ sλd/(λu +λd) = s − sη (< s). In the other extreme, when
ρ ↑ ∞, clearly µlo ↓ 0. Together with ∂µlo/∂ρ < 0, therefore, as ρ increases in (0,∞), µlo decreases
from s − sη to 0 and µhn (= µlo + η − s) also drops from η − sη to η − s. These extreme values of µlo
and µhn hold irrespective of what values φlo and φhn take.

To continue, inspect h(µ;n) that determines φlo and φhn. Simple algebra shows that for n ≥ 2,
there exists a unique µ̂(n) ∈ (0, 1], monotonically decreasing in n, such that h(µ̂;n) = 0 and
h(µ;n) < 0 (> 0) for 0 < µ < µ̂ (> µ̂). Therefore, depending on whether µ̂ (determined solely by n)
falls in the above supports of µlo and µhn, investors’ choice of the technology, φlo and φhn, can be
pinned down accordingly. Consider µho for example. (1) If µ̂ > η − sη = sup µhn, then h(µhn;n) < 0
always holds and φlo = 0. (2) If µ̂ < η − s = inf µhn, then h(µhn;n) > 0 always holds and φlo = 1.
(3) In between, when η − s ≤ µ̂ ≤ η − sη, by monotonicity, there exists thresholds ρ̂1 < ρ̂2 such that
fixing an arbitrary φhn ∈ [0, 1] and µhn = µ̂ (hence µlo = µ̂ − η + s),

f (µlo = µ̂ − η + s,φlo = 1,φhn, ρ = ρ̂1) = f (µlo = µ̂ − η + s,φlo = 0,φhn, ρ = ρ̂2) = 0.

Therefore, when ρ < ρ̂1, µhn > µ̂ and φlo = 1; when ρ > ρ̂2, µhn < µ̂ and φlo = 0; when
ρ̂1 ≤ ρ ≤ ρ̂2, µhn = µ̂ is constant and φlo monotonically decreases from 1 to 0. Three similar cases
for φhn are omitted for brevity. □
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Corollary 1

Proof. Consider a searching hn-buyer for example. He contacts n investors but knows that the
number of counterparty he will actually find, N , is a random variable that follows a binomial
distribution with n draws and success rate µlo. Each of these N counterparties then quotes a random
price accroding to F (α ; µlo,n) stated in Proposition 1. The searching buyer chooses the lowest
ask (the lowest markup) across the N available quotes. The c.d.f. of this minimum markup is
1 − (1 − F (α ; ·))N−1 for N ≥ 1. Since the probability of N ≥ 1 is (1 − (1 − µlo)n), one obtains the
the conditional c.d.f. as stated in the corollary. The same applies to a searching lo-seller. □

Corollary 2

Proof. From the proof of Proposition 3, the flow equation (14) can be written as f (µlo,φlo,φhn) = 0,
where f (·) is given in Equation (15). It is easy to see that f (·) is monotone decreasing in µlo, in
φlo, and in φhn. By implicit funtion theorem, therefore, ∂µlo/∂φlo ≤ 0 and ∂µlo/∂φhn ≤ 0. That
is, the equilibrium seller population µlo is decreasing in both φlo and φhn. Noting that welfare w is
decreasing in µlo, therefore, SMS usage improves welfare. □

Corollary 3

Proof. The result readily follows the flow condition f (·) = 0 (Equation 14) in the proof of Propo-
sition 3. In particular, it is easy to see that limρ↑∞ φlo = 0 and limρ↑∞ φlo = 0, because otherwise
limρ↑∞ f (·) = −∞, not supporting an equilibrium. □
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