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Abstract

We consider a market where large investors do not only trade on information about

asset fundamentals. When they trade more aggressively, the price becomes less informa-

tive. Other investors who learn from prices, in turn, are less concerned about adverse

selection and provide more liquidity, causing large investors to trade even more aggres-

sively. This trading complementarity can engender three unconventional results: i) in-

creased competition among large investors makes all investors worse off, ii) more precise

private information reduces price informativeness, creating complementarities in informa-

tion acquisition, and iii) multiple equilibria emerge. Our results have implications for

competition and transparency policies in financial markets.
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1 Introduction

Large investors play an increasingly important role in asset markets in the U.S. and around the

world. In U.S. equities markets, for example, ownership by the largest 10 institutions has more

than quadrupled to 26.5% from 1980 to 2016 (Ben-David, Franzoni, Moussawi, and Sedunov,

2021). In other developed countries, the largest five equity holders hold around 3% to 20%

of all shares (Kacperczyk, Nosal, and Sundaresan, 2020). Thus, asset markets nowadays are

populated by large investors with significant market power. Moreover, research has shown that

these investors often trade for reasons unrelated to stocks’ discount rates or future cash flows,

that is, fundamentals. In doing so, they cause fluctuations in prices unrelated to fundamentals,

or, add noise in prices. A salient example is institutional investors who put increasingly more

weight on the environment, social, and governance (ESG) performance of firms in their invest-

ment decisions. Stocks that are likely owned more by ESG-conscious investors would thus have

less informative stock prices. Such correlation is found in our empirical analysis summarized in

Table 1. Existing studies also show that ownership by the largest 10 institutions in the U.S. eq-

uities market is positively associated with noisier prices (Ben-David et al., 2021). Mutual funds

experiencing large flows adjust their holdings, injecting noise in prices (Coval and Stafford, 2007;

Edmans, Goldstein, and Jiang, 2012). Among high-frequency traders (HFTs), trading revenues

and risk-adjusted performance are highly concentrated in the fastest five traders (Baron, Bro-

gaard, Hagströmer, and Kirilenko, 2019), and overall HFT activity and presence are associated

with lower price informativeness (Weller, 2018; Gider, Schmickler, and Westheide, 2019). We

refer to these investors as noise-creating large investors.1

The existence of noise-creating large investors underlies a potential tension between the

two central functions of financial markets, namely, the efficient allocation of assets and the

aggregation of dispersed information. When their market power rises, these large investors

take their higher price impact into account and scale down trades. This hampers the efficient
1In Section 9.1, we discuss the evidence on noise-creating large traders in more detail.
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reallocation of assets while, at the same time, reduces the noise they inject into prices. The

attenuated noise allows other traders to extract more information from prices and thus trade

more efficiently. As a result, market power does not need to reduce welfare, in contrast to

conventional understanding.2 As we demonstrate in the paper, the overall impact on market

outcomes and welfare ultimately depends on the nature of the interaction between the noise-

creating large investors and other investors.

We address the following questions: How does the trading behavior of noise-creating large

investors’ affect the behavior of other investors? Conversely, how is it affected by other in-

vestors’ behavior? Under what conditions does an increase in the market power enjoyed by

large investors improve welfare? How do these results change when investors rely less on the

information contained in prices (e.g., because they have more precise private signals)? Answer-

ing these questions not only enriches our understanding of the effect of market power on the

workings of financial markets, but it is also essential for devising competition and transparency

policies, given how concentrated ownership has become.

To answer these questions, we develop a model in which large investors have private valua-

tions, as in Vives (2011), while others learn from prices, as in Hellwig (1980). For simplicity, we

assume that the latter are small and hence behave competitively. Crucially, the model features

large investors creating noise from the small investors’ point of view: Large investors’ valuation

vL is imperfectly correlated with small investors’ vS, and small investors have dispersed signals

about vS. Hence, small investors learn about vS from prices that are contaminated by vL. For

simplicity, interpret vS as an asset’s fundamentals.3 The imperfect correlation between vL and

vS captures the fact that large investors have trading motives other than asset fundamentals.
2Noise in asset prices might also matter to welfare if it influences firms’ real decisions, as empirically shown

in Edmans et al. (2012) for takeovers and in Dessaint, Foucault, Frésard, and Matray (2018) for investments
by peer firms. See Bond, Edmans, and Goldstein (2012) for a comprehensive survey on the real effects of the
information content of prices.

3This assumption is not necessary for our results. We derive our results about informational efficiency under
the assumption that vS has two components: a fundamental value and one a private value. Thus, both small
and large investors’ trading may contaminate price with noise unrelated to fundamental.
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The premise that the large investors have private valuations can be rationalized by ESG

concerns and, as discussed in Section 8 in three motivating examples in which large investors are,

respectively, high-frequency traders (HFTs) who have private information about some future

order flow, mutual funds with demands driven by fund flows, and commodity producers with

risky production costs. Notably, in the HFTs example, large and small investors have common

values. It is the order flow that HFTs absorb that makes them behave as if they have private

values.

The key mechanism uncovered in this paper is a trading complementarity between large

and small investors when large investors create noise. When the large investors trade more

aggressively, prices reflect more of their own valuation vL. Knowing this, small investors are

less concerned with adverse selection (vis-à-vis other small investors) and are more willing to

provide liquidity; that is, they sell (buy) more following an increase (decrease) in price. The

improved liquidity in turn encourages large investors to trade more aggressively.4 We show in

Internet Appendix IA.1 that the trading complementarity does not arise when large investors

do not exercise their market power and take prices as given.

This trading complementarity underpins three novel insights on the consequences of market

power in financial markets. The first concerns the effects of competition on market quality and

investor welfare. Consider an increase in competition among large investors caused by a breakup

of existing ones. As their market power is reduced, large investors trade more aggressively,

resulting in higher liquidity but lower informational efficiency. Our mechanism thus underpins

a negative relationship between these two important dimensions of market quality (liquidity

and informational efficiency).

Regarding welfare, increased competition among large investors can reduce aggregate welfare

and even make small investors worse off, when the informational friction is severe, that is,
4It is worth noting that our results are not affected by whether large investors are more or less informed

about vS than small investors. Indeed, they create noise because they have trading motives unrelated to asset
fundamentals, not because they are uninformed.
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when the assets’ fundamentals are noisy and investors’ signals are imprecise. As discussed

above, more competition among large investors leads them to impound more noise into prices,

thus making price less informative and small investors’ asset allocations less efficient. This

unconventional result suggests that competition policy in financial markets should take the

informational friction into account.5

The second result shows that an improvement in the quality of private information held by

investors can reduce informational efficiency. This seemingly paradoxical result stems from the

aforementioned trading complementarity: Small investors endowed with more precise signals are

less concerned with adverse selection and are more willing to provide liquidity. Higher liquidity,

in turn, induces large investors to trade more aggressively, thereby injecting more noise into the

price. This additional noise can dominate the effect of improved private information, resulting

in a net decrease in informational efficiency, if the informational friction is severe enough. This

can explain the puzzling evidence in Bai, Philippon, and Savov (2016) and Farboodi, Matray,

Veldkamp, and Venkateswaran (2020) that, despite the tremendous advancement in information

technology, price informativeness has decreased for stocks outside the S&P 500 index (while

increasing for stocks in the index). Indeed, non-index stocks are less covered by analysts and

are therefore subject to more severe informational friction.

The above result also implies a potential complementarity in information acquisition. Con-

sider a small investor deciding how much information to acquire about an asset. If other small

investors acquire more information, then, provided that informational frictions are severe, the

price becomes less informative (due to the large investors impounding more noise into the price),

thereby stimulating the acquisition of more information. The novel prediction is that, for stocks

with high (low) informational friction, investors’ information choices are strategic complements

(substitutes).
5SEC chairman Gary Gensler has expressed concerns about large trading firms’ market power in executing

retails trades and their practice of “payment for order flow” (Financial Times, “Gensler raises concern about
market influence of Citadel Securities,” May 6, 2021.). In Section 8, we offer an interpretation of our model,
which can be seen as market makers competing for order flows. (See Remark 4.)
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The third result concerns the effect of market power on the stability of financial markets.

The trading complementarity engenders an amplification mechanism whereby small shocks

are magnified to have a disproportionate impact on market outcomes. Furthermore, multiple

equilibria can emerge. These results do not arise when large investors take prices as given,

suggesting that market power, in combination with informational friction, can be a source of

fragility in financial markets.6

Putting our three main results together, we show that the presence of large investors creating

noise entails rich and novel implications, with several overturning traditional results. Regarding

the design of policies, promoting competition reduces investor welfare, and increasing trans-

parency (whereby investors can obtain better information at lower cost) harms informational

efficiency of the markets. Furthermore, as market power can both increase welfare and cause

fragility, there is a potential trade-off between investor welfare and financial stability to be

confronted by regulators. In Section 9.3, we discuss in detail the model’s novel implications to

transparency and competition policies.

The remainder of the paper is organized as follows. Section 2 reviews the literature. Section

3 presents the model. Section 4 characterizes the equilibrium and the key mechanism. Section

5 studies the effects of competition on welfare and Section 6 the effects of more precise private

signals on informational efficiency. Section 7 analyzes multiple equilibria and fragility. Section

8 offers three interpretations of our model. Section 9 discusses the evidence that supports the

model’s premise, as well as novel empirical and policy implications. Section 10 concludes.
6That market power as a source of fragility in financial markets is rarely considered in the literature. Models

of trading complementarity typically feature competitive agents (Goldstein, Ozdenoren, and Yuan, 2011, 2013b;
Goldstein and Yang, 2015; Cespa and Foucault, 2014). More generally, competition is often linked to financial
fragility because i) agents do not internalize the adverse effects of their trades (e.g., fire sales) and contract
choices (Eisenbach and Phelan, 2021; Kuong, 2021) and ii) agents shirk on time-consuming risk management
efforts in order to preempt others in taking profitable trading opportunities (Bouvard and Lee, 2020).
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2 Relation to the Literature

This paper is related to two strands of research. The first is the literature on strategic comple-

mentarities in the presence of various kinds of informational frictions in markets. Most studies

are cast in a competitive REE framework, which implies that all traders take prices as given.

Complementarities have also been found when there is multidimensional information (Goldstein

and Yang, 2015), learning across markets (Cespa and Foucault, 2014), learning by financiers

(Goldstein, Ozdenoren, and Yuan, 2013b; Glebkin, Gondhi, and Kuong, 2020), agency problems

in delegated investment (Huang, 2015), dynamic trading (Cespa and Vives, 2011), and endoge-

nous liquidity trading (Han, Tang, and Yang, 2016). We contribute by adding that market

power, when interacting with informational friction, can give rise to complementarities. Below,

we review other closely related papers with competitive agents and highlight our contribution.

There are competitive REE models that feature noise creation by one group of investors

to another. Goldstein, Li, and Yang (2013a) consider a model with two groups of speculators

with different investment opportunities. Sockin and Xiong (2015) study a trading model with

commodity producers and consumers. Due to heterogeneity of hedging needs (Goldstein, Li, and

Yang, 2013a), private values (Sockin and Xiong, 2015), and preferences (Goldstein, Kopytov,

Shen, and Xiang, 2022), demands made by one group affect inference from prices by the other.

The key difference from our paper is that the traders who create noise are small. Thus, their

trade aggressiveness does not vary with the liquidity provision by other traders. As a result,

relative to these two papers, our contribution is to derive novel implications of competition on

liquidity, informational efficiency, fragility, and welfare.

One unconventional result of our paper is that improvement of transparency could dete-

riorate price informativeness. With very different mechanisms, Dugast and Foucault (2018)

and Banerjee, Davis, and Gondhi (2018) find a similar prediction. Dugast and Foucault show

that when the cost of low-precision signals declines, traders acquire more of them and less of

time-consuming, high-precision signals. In the differences-of-opinion model of Banerjee et al.,
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improving transparency about asset fundamentals can cause traders to learn more about others’

beliefs. While both papers obtain the result that transparency can harm price informativeness,

our result applies specifically for stocks with high informational frictions, which corroborates

with the evidence in Farboodi et al. (2020) and Bai et al. (2016).

At a conceptual level, our model of noise-creating large traders uncovers a tension between

liquidity and informational efficiency. Papers that share this tension include Stein (1987),

Dow (2004), and Han et al. (2016), who emphasize the (endogenous) entry of, respectively,

speculators, hedgers, and liquidity traders.7 We enrich their results in the sense that, even

without entry, such tension exists because imperfectly competitive traders adjust their trading

aggressiveness in response to liquidity provision by other traders. We therefore can provide new

analyses about market power’s impact on market quality and welfare in financial markets. As

we have argued before, the issue of market power possessed by large, institutional investors is

empirically and policy-relevant in many asset markets.

The second stream of research we contribute to is the literature on strategic trading. More

specifically, our paper is most related to the works on demand function equilibria in which

agents have private valuations.8 Unlike ours, many private values models (e.g., Vives, 2011;

Rostek and Weretka, 2012, 2015b; Du and Zhu, 2017; Kyle, Obizhaeva, and Wang, 2017)

feature ex-ante symmetric agents, and there is no heterogeneity in price impact. Therefore,

the complementarity between large and small traders uncovered in this paper does not arise.

Manzano and Vives (2016) consider a setting similar to ours, with the key difference being

that the traders within each group receive the same signal (while small traders in ours receive

dispersed signals). In equilibrium, therefore, traders in one group not only know their own

signal but also learn about the other group’s signal perfectly from the price. Hence, there is no

interaction between liquidity and informational efficiency, as traders learn the same information
7Other works have found that liquidity and informational efficiency reinforce each other. See, e.g., Cespa

and Vives (2011), Cespa and Foucault (2014), and Lee (2013).
8Papers in which models incorporate common valuations include Kyle (1989), Pagano (1989), Vayanos (1999),

Rostek and Weretka (2015a), and Malamud and Rostek (2017).
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regardless of the liquidity.

Finally, Kacperczyk et al. (2020) also study the effect of market power on price informative-

ness. Their model features oligopolistic informed traders who acquire information and trade

with competitive uninformed traders. They find that price informativeness is non-monotonic

in size of the informed sectors. The crucial difference between their paper and ours is that

they assume that uninformed traders do not learn from prices. As a result, their large traders

do not create noise and there is no trading complementarity. In contrast, our model predicts

that large traders’ activities make price noisier, consistent with evidence about institutional

investors (Ben-David et al., 2021)) and HFTs (Weller, 2018; Gider et al., 2019). Our model

also delivers implications that market power can improve welfare and engender fragility.

3 A Model of Noise-Creating Large Traders

There are two time periods, t ∈ {0, 1}. Two trader groups, large traders and small traders, are

trading a risky asset at time t = 0. There are N > 1 large traders indexed by i ∈ {1, 2, ..., N}

as well as a unit continuum of small traders indexed by j ∈ [0, 1]. Hereafter, we shall facilitate

the exposition by using male (female) pronouns for large (small) traders. All traders are risk-

neutral and have quadratic inventory costs. Traders are identical within each group, and their

preferences are characterized as follows. If a large trader purchases x units of the asset (and

pays price p) at time t = 0, then his utility at time t = 1 is

uL = (vL − p)x− wLx
2

2
, (1)

where vL denotes asset value for a large trader and the term wLx
2/2 represents the inventory cost

of holding x units of asset. This cost may be due to regulatory capital requirements, collateral

requirements, or risk management considerations. We call 1/wL the risk-bearing capacity of a

large trader.
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Suppose a small trader similarly purchases x units of the asset (and pays price price p) at

time t = 0; then her utility at time t = 1 is

uS = (vS − p)x− wSx
2

2
, (2)

where vS and 1/wS are, respectively, the asset value and risk-bearing capacity of small traders.

The preference specification just given, where risk-neutral traders have quadratic inventory

costs and private values, is the same as in for example, Vives (2011), Rostek and Weretka

(2012, 2015b), Du and Zhu (2017), and Duffie and Zhu (2017).

Asset values are realized at time t = 1 but are uncertain at time t = 0. The difference in

the values of large and small traders generates gains from trade between groups. The values vL

and vS are (jointly) normally distributed and imperfectly correlated.9 That is, vk ∼ N(v̄k, 1/τk),

for k ∈ {S, L}, with corr(vL, vS) = ρ ∈ [0, 1).10

The information structure is as follows. Small traders do not know vL and have dispersed

information about vS. In particular, each small trader j receives a signal sj = vS + εj, where

the εj are independent and identically distributed (i.i.d.) as εj ∼ N(0, 1/τε) and are also

independent of vS and vL; the parameter τε measures the signal’s precision. We assume that

large traders know vL but do not know vS. Our main results continue to hold when large traders

do not know vL perfectly (see Section IA.4). Also, the results are unchanged if large traders

receive dispersed information, however precise, about vS. In short, how informed large traders

are relative to small traders is not crucial. What is crucial is the noise created by large traders:

Small traders learn about vS from prices that are contaminated by vL.
9While we assume common values within each group (large and small) in the main model, we show that our

main results continue to hold in a model with heterogeneous values considered in Section IA.5.
10The model would still be tractable for ρ < 0, but in that case, the equilibrium mechanism would feature

additional strategic complementarities that are not the focus of this paper. The complementarity is as follows:
When other small traders trade more aggressively, a small trader of interest might have incentives to trade
more aggressively as well. The reason is that, when the correlation is negative, if other small traders trade more
aggressively then the price might become less informative to the trader of interest because the information in
other traders’ signals may be (partly) canceled out by information in the large traders’ value. Hence, the trader
of interest will weigh the price less and her signal more, thereby increasing her trading aggressiveness as well.
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The trading protocol is a uniform-price double auction. Each trader k submits a net demand

schedule xk(p), where xk(p) > 0 (xk(p) < 0) corresponds to a buy order (sell order). The market-

clearing price p∗ is such that the net aggregate demand is zero,

N∑
i=1

xi(p
∗) +

∫ 1

0

xj(p
∗) dj = 0. (3)

In equilibrium, a trader k is allocated x∗k = xk(p
∗).

The equilibrium concept is the Bayesian Nash Equilibrium, as in Kyle (1989) and Vives

(2011); thus, traders maximize expected utility, given their information and accounting for

their price impact, and equilibrium demand schedules are such that the market clears. As in

most of the literature, we restrict the analysis to symmetric linear equilibria in which a large

trader i and a small trader j have the following demand schedules:

xi = α + β · vL − γ · p and xj = αS + βS · sj − γS · p. (4)

The coefficients (α, β, γ) and (αS, βS, γS) are identical for traders within the same group. Note

that we rule out trivial (no-trade) equilibria by focusing on equilibria for which (β, γ, βS, γS) ̸= 0.

We conclude this section with a brief discussion of our modeling choices. First, there

are noise-creating large investors. As mentioned in the introduction, a prominent example is

institutional investors who put weights on ESG-related metrics in their investment decisions. In

Section 9.1, we present supportive empirical evidence. We also discuss existing evidence showing

that mutual funds and high-frequency traders have market power and contribute to noise in

prices. Second, we use heterogeneous private valuations to capture the idea of large investors

creating noise to small investors. In Section 8, we show how the model can be interpreted in

contexts of trading among i) institutional and retail investors, ii) fast and slow traders, and

iii) commodities producers and firms that use commodities as input for production.11 In short,
11In the example of fast and slow traders, there is common valuation. Yet, fast traders behave as though they

have private values because they can trade at higher frequencies and so absorb order flow before slow traders.
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we believe the key feature of our model is realistic, while the model itself is parsimonious and

flexible enough to speak to various segments of financial markets.

Remark 1 (Traders’ Preference Specification). We have opted for a framework with risk-neutral

investors subject to quadratic inventory costs (linear-quadratic framework, hereafter) instead

of one with exponential utility. We do so because the linear-quadratic framework is (i) more

flexible to adopt different applications (see Section 8), and (ii) more tractable, especially when

it comes to welfare analysis, allowing us to derive all our results analytically. In terms of

economic forces, the main difference between the two frameworks, as pointed out in Vives

(2017), is that the linear-quadratic framework abstracts from the Hirshleifer (1971) effect – the

potential impact of information on ex ante risk-sharing opportunities. Since our mechanism

focuses on the role of information aggregation and market power, we believe that incorporating

such additional forces would enrich but not overturn our results regarding welfare.

Remark 2 (Aggregate Supply of Risky Asset). Equations (1) and (2) suggest that traders start

with zero endowment in the risky asset; hence, its aggregate supply is equal to zero. It is easy

to reduce a model with positive asset supply to the one presented above. Suppose that all

traders in group k ∈ {L, S} traders start with endowment ek in the risky asset. For simplicity,

assume that ek, k ∈ {L, S} is known to all traders. (Given that vL and vS are different,

our model does not require extra sources of noise.) Then, traders’ utilities can be written as

uk = (vk −wkek − p)x− wkx
2

2
, where we have dropped the constant term wke

2
k

2
, since it does not

affect optimization. Thus, adding initial endowment is equivalent to adding a constant −wkek

to vk, or, changing the mean of vk from v̄k to v̄k − wkek.
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4 Equilibrium

Liquidity and informational efficiency

We begin the analysis with definitions of the two fundamental aspects of market quality, namely,

liquidity and informational efficiency.

Liquidity L is measured by market depth, defined as the reciprocal of price impact λ, as in

Kyle (1989)12,

L ≡ 1

λ
= (N − 1)γ + γS. (5)

By definition, 1/λ is the price sensitivity of the residual supply of the asset. Equation (5) holds,

as there are (N − 1) large traders with sensitivity γ and a unit mass of small traders with

sensitivity γS contributing to the price sensitivity of the residual supply. Equation (5) implies

that liquidity is directly related to the price sensitivities γ and γS, an implication that enables

defining liquidity provision as follows: A trader who increases (decreases) the price sensitivity

of his demand provides more (less) liquidity.

Next, we define informational efficiency. We work with two measures. The first one, revela-

tory price efficiency (RPE), as introduced in Bond et al. (2012), measures the extent to which

prices reveal the amount of information necessary for decision-makers to take value-maximizing

actions. Since large traders know their values perfectly, only the information about small

traders’ values, vS, contributes to RPE. Formally, RPE is defined as follows:

IRPE ≡ Var(vS)

Var(vS|sj, p)
.

IRPE captures the reduction in variance of small traders’ values that is due to learning.

The second measure, forecasting price efficiency (FPE), is most closely related to empirical
12All our results continue to hold if we define liquidity as price elasticity of aggregate demand, equal to

Nγ + γS , which is a standard measure of liquidity in competitive REE models.
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measures of price informativeness. It measures the extent to which prices reveal information

about the fundamental value of the asset, which we denote by v. Formally, FPE is defined as

follows13:

IFPE ≡ Var(v)

Var(v|sj, p)
.

To compute IFPE in our model, we need to specify the relationship between investors’ values

(vk, where k ∈ {S, L}) and asset fundamental value v. To this end, we assume that vk = v+ ũk,

where ũk are investors’ private values. Moreover, we allow the private values to be correlated

with v by setting ũk = (ak − 1)v + uk, so vk = akv + uk. Thus, when ak > 1 (ak < 1),

the investors’ private value is positively (negatively) correlated with asset fundamentals. The

correlation structure depends on applications. For example, if investors’ private values stem

from ESG concerns and better ESG performance (higher ũk) tend to come at the expense of

worse financial performance (lower v), then the correlation is negative. In particular, aL < aS

reflects the idea that large investors have stronger preferences for ESG outcomes than small

ones.

While the specific structure of vS and vL help the discussion of IFPE, it restricts the gen-

erality of the model. Thus, we state it as an assumption below, which is only invoked when

we establish results concerning IFPE. This allows us to distinguish the results that hold in the

specific structure from those that hold more generally.

Assumption 1. The values are given by vS = aSv + uS and vL = aLv + uL, where aS, aL > 0,

and v, uS and uL are jointly normally distributed and independent, with v ∼ N(v̄, τ−1
v ), uS ∼

N(0, τ−1
u,S), and uL ∼ N(0, τ−1

u,L).
13Our results also hold if we define FPE as I ′ ≡ Var(v)

Var(v|p) . In particular, under I ′ , it is easier to achieve one of
our novel results that informational efficiency can decrease in investors’ private signal precision τϵ. The reason
is that the private signals only indirectly affect I ′ via the information aggregated by prices. In contrast, a more
precise signal sj directly improves IFPE as Var(v|sj , p) decreases.
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Equilibrium characterization

The key to our results is the complementarity between how aggressively large traders trade,

captured by the coefficient β in their demand, and how much liquidity small traders provide,

reflected in their demand’s price sensitivity γS. For clarity, we break it down into two parts

and analyze them separately. In the first part, large traders’ demand schedules are treated

as exogenous. Lemma 1 states how an exogenous increase in their trading aggressiveness β

affects informational efficiency IRPE and the amount of liquidity provided by small traders γS.

In the second part, small traders’ demand schedules are assumed to be exogenous. Lemma 2

then shows how an increase in their liquidity provision γS affects liquidity L and large traders’

trading aggressiveness β. The equilibrium is analyzed in Theorem 1.

Lemma 1 (Large traders’ trading aggressiveness worsens informational efficiency and encour-

ages small traders to provide liquidity). Fix the parameters (α, β, γ) in large traders’ demand

schedules. There exists a sufficient static π that is infomationally equivalent to the price p,

such that π = vS + ζ/
√
τπ, where ζ ∼ N(0, 1) and is independent of vS, and the precision

τπ ≡ Var[π|vS]−1 = τL
1−ρ2

(
ρ
√

τS
τL

+ βS
Nβ

)2

. Informational efficiency can then be written as

IRPE =
τS + τε + τπ

τS
, (6)

and the price sensitivity of small trader j’s demand is

γS =
1

wS
− 1

wS

∂E[vS|sj, p]
∂p︸ ︷︷ ︸

>0, information effect

.

Both τπ and ∂E[vS |sj ,p]
∂p

are positive and decreasing in β, ceteris paribus.

Lemma 1 establishes two steps in the trading complementarity, which is illustrated by

Figure 1. The first step shows that because large traders create noise in the price from the small

traders’ perspective, more aggressive trading reduces the informational efficiency, measured by
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the RPE. The second step illustrates how small traders change the amount of liquidity they

provide as a consequence. Since informational efficiency is reduced, an increase in price becomes

less of a signal of an increase in asset value vS (∂E[vS |sj ,p]
∂p

becomes smaller). Hence, small traders

are willing to sell more of the asset (price sensitivity γS increases) in response to an increase in

the price.

Market is
more liquid

Large traders
trade more
aggressively

(4)

Price is less
informative for
small traders

(1)

Small traders
provide more

liquidity

(2)(3)

Figure 1: Trading complementarity when large traders create noise.

Next, we turn to the other direction of the trading complementarity and show that small

traders’ liquidity provision makes large traders trade more aggressively.

Lemma 2 (Small traders’ liquidity provision enhances liquidity and encourages large traders

to trade more aggressively). Fix the parameters (αS, βS, γS) in small traders’ demand schedules.

The demand of a large trader i is given by xi = (vL − p)/(wL + λ), and his trading aggressiveness

is given by

β =
1

wL + λ
.

Ceteris paribus, an increase in γS reduces price impact λ, whereby increases liquidity L and β.

Lemma 2 describes the third and fourth steps in Figure 1. It is intuitive that small traders’

liquidity provision makes the market more liquid, reducing the price impact faced by the large

15



traders. The large traders then take advantage of the decreased price impact by trading more

aggressively.

In sum, the two parts of our proposed mechanism generate a new type of complementarity.

As large traders trade more aggressively, prices become less informative to small traders. Less

informative prices induce small traders to provide more liquidity, which then induces large

traders to trade even more aggressively. The overall equilibrium is characterized in the following

theorem.

Theorem 1 (Equilibrium characterization). There exists at least one equilibrium. All equilib-

rium variables can be expressed in closed form by way of an endogenous variable δ ≡
√
τπ/τε.

In particular, price impact can be expressed as

λ(δ) =
NwS√
τL

(δ
√
τε(1− ρ2)− ρ

√
τS)

(
δ2 +

τS + τε
τε

)
− wL.

The expressions for other equilibrium variables are presented in Appendix A.3. The equilibrium δ

is the solution to the sixth-order polynomial equation

λ(δ)(wL +NwS + λ(δ))− wS

(
1 + δ

(
δ − ρ√

1− ρ2

√
τS
τε

))
(wL + 2λ(δ)) = 0, (7)

such that λ(δ) > −wL/2.

We end this section by providing sufficient conditions for the equilibrium uniqueness.

Proposition 1. The equilibrium is unique for large enough N .

We have shown that trading complementarity arises when large traders create noise. Propo-

sition 1 states that when the large traders have little market power, the complementarity is

sufficiently weak and hence the equilibrium is unique. When there are many large traders, each

of them has little price impact. Additional liquidity provided by small traders would not affect

large traders’ trading aggressiveness much.
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In the next three sections, we explore various implications of the trading complementarity.

5 Competition and Welfare

Suppose that due to splits or entries, large traders become more competitive. Will small traders

be better off and will aggregate welfare then increase? The answer is yes, according to the

conventional understanding of competition, which forces larger traders to offer better terms to

small traders. In this section, we show that this conventional wisdom is no longer necessarily

valid when large traders create noise, especially when the informational frictions are severe.

In general, there are two ways to increase the degree of competition among large traders:

either by breaking up existing traders or by entry of new ones. While all our results regarding

competition hold in both formulations, breakup of large traders is our preferred analysis because

it does not change the total risk-bearing capacity of large traders and thus helps to isolate the

effect of competition. Formally, a breakup constitutes an increase in the number of large traders

N , while the cost parameter wL is defined as wL ≡ N/cL, where the constant cL is equal to

the aggregate risk-bearing capacity of large traders (N/wL). In this way, we keep constant the

total amount of potential noise to be injected by large traders. We maintain the assumption

that wL = N/cL hereafter.

Next, we turn to welfare. Denote UL and US as the ex-ante expected utility of a large and a

small trader, respectively. Then the social welfare is defined as the sum of all traders’ ex-ante

utilities, W ≡ NUL + US.

To clearly show the impact of competition on welfare, it is useful to compute the welfare in

the frictionless, first-best (FB) benchmark and then study the distortions caused by the frictions.

In the first-best benchmark, all traders take prices as given and know their values perfectly;

that is, there is neither market power nor informational friction. Traders bid according to their

marginal utilities, so that xj = (vS − p)/wS for all j ∈ [0, 1] and xi = (vL − p)/wL for all
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i ∈ {1, 2, ..., N}. It is then immediate to show that the equilibrium allocations to small and

large traders are given by

xFBS =
vS − vL

wS + wL/N
and xFBL = −xS

N
,

respectively. Welfare is then given by

WFB =
E[(vL − vS)

2]

2(wS + wL/N)
.

The next proposition characterizes welfare loss (WL)—that is, the difference between the first-

best and the equilibrium welfare. It shows how market power and noise distort allocations and

cause inefficiency. We note that under breakup or merger, changes in N do not affect wL/N

and hence WFB. Therefore, the comparative statics of WL with respect to N are the same as

that of W .

Proposition 2. The welfare loss WL ≡ WFB −W can be expressed as

WL =
wS + wL/N

2
E[(xFBS − ⟨xS⟩)2] +

1

2
wSE[(xj − ⟨xS⟩)2]. (8)

Here, ⟨xS⟩ ≡
∫ 1

0
xj dj, the average allocation to small traders, is given by

⟨xS⟩ = ψ · (xFBS + b), (9)

where

ψ =
wS + wL/N

wS + (wL + 1/L)/N
, b =

⟨vS⟩ − vS
wS + wL/N

, ⟨vS⟩ =
∫ 1

0

E[vS|p, sj] dj.

The allocation to a small trader j is given by

xj = ⟨xS⟩+ βSεj. (10)
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Expression (8) for welfare loss, as derived in Vives (2017), incorporates two sources of

inefficiency. The first term in (8) captures the welfare loss due to the deviation of the average

allocation x̄S from the xFBS . The deviation, as characterized in (9), is specific to this model

and is closely related to the two aspects of market quality. First, a lack of informational

efficiency causes the average small trader’s forecast ⟨vS⟩ to differ from the true value vS, and

that difference contributes to a bias b in (9). Second, a lack of liquidity causes large traders

to reduce their demand, so the allocation is scaled down by a factor ψ ∈ (0, 1). We refer to

ψ as scaled liquidity as it increases with L and approaches zero (unity) as L approaches zero

(infinity).

The second term in (8) captures the welfare loss due to the deviations of small traders’

allocation from the average allocation ⟨xS⟩. Such deviations, which are absent in the first-

best, reflect the imperfect risk-sharing among small traders. As shown in (10), small traders in

equilibrium hold allocation dispersed around the average because they put some weight on the

signals and thus the idiosyncratic noise therein. Indeed, the deviations increase in the weight

on signal βS and the noise in the signal ϵj.

By identifying the equilibrium distortions, we can decompose the welfare loss in different

components and study how each of these components is affected by competition.

Proposition 3. The welfare loss can be decomposed into four terms, WL = WL1 + WL2 +

WL3 +WL4, where

WL1 ≡ (1− ψ)2WFB, WL2 ≡
ψ2E[(vS − ⟨vS⟩)2]
2(wS + wL/N)

,

WL3 ≡ −
(
wS +

wL
N

)
ψ(1− ψ) Cov(b, xFBS ), WL4 ≡

wS
2
E[(xj − ⟨xS⟩)2].

WL1 is decreasing in N , whereas WL4 is increasing in N . If Var(vS|sj, p)−1 > 2τε, which is

implied by τε < τS, then WL2 increases in N . Suppose that (ρ2 − 1) τϵ + ρ
√
τLτS − τS > 0,

then for sufficiently small h = wL/(NwS) there exists equilibrium in which WL increases in N .
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Such equilibrium is unique for N large enough.

Proposition 3 is the key result in understanding how competition affects welfare loss and

thus equilibrium welfare. The decomposition is derived as follows. Consider the deviation of

⟨xS⟩ from the first-best allocation xFBS . According to (9), that deviation can be expressed as

xFBS − ⟨xS⟩ = (1− ψ)xFBS − ψ · b. (11)

The first term displayed in Proposition 3, WL1, is proportional to E[(1 − ψ)2(xFBS )2] and

corresponds to the first term in equation (11). This term decreases with N and is in line with

the standard result in industrial organization (see, e.g., Tirole 1988; Ausubel, Cramton, Pycia,

Rostek, and Weretka 2014): with more competition, large traders offer better terms to small

traders, and thus more trades between the groups occur.

The second term WL2 is central and most noteworthy to this paper. It is proportional to

E[ψ2b2] and corresponds to the second term in equation (11). Importantly, it increases with

competition when the informational frictions are severe enough, for example, when the private

signals are noisy enough. The intuition is as follows. Endowed with dispersed signals, small

traders rely on the price to infer the asset value vS, and such reliance leads to a common bias b

due to the noise created by the large traders. When the large traders become more competitive,

they trade more aggressively, and, by the trading complementarity, noise and liquidity reinforce

each other, increasing both b and ψ. Finally, if the private signals are imprecise enough, the

small traders rely heavily on the price and then it is guaranteed that they suffer from the

increased bias.

The third term WL3 is proportional to Cov((1− ψ)xFBS , ψ · b) and is due to the interaction

between the two terms in (11). It states that, if bias b is (on average) positive when xFBS is

positive (i.e., if Cov(b, xFBS ) > 0), then the bias can partly compensate for the “scaling down”

effect due to illiquidity and thereby reduce the corresponding loss in welfare. Numerical simu-
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lations reveal that WL3 can either decrease or increase with N , depending on the parameters

chosen.

The fourth and last term WL4 is proportional to E[(xj−⟨xS⟩)2] and arises from the disper-

sion of individual allocations xj around the average allocation ⟨xS⟩. This term is decreasing in

informational efficiency: The higher the informational efficiency is, the less small traders load

on their signals and on the noise in those signals. Since competition diminishes informational

efficiency, it follows that WL4 increases with N .

The analysis and discussion above suggest that competition could harm all investors’ welfare.

In particular, the channel of welfare loss that is closest to the heart of our mechanism, WL2,

should be more dominant when large traders and noise are more relevant. We confirm this

intuition and show that the welfare loss increases with competition when h = wL/(NwS) is

small (i.e., when large traders have relatively bigger risk-bearing capacity) and when τε < τS

and τL is small (i.e., when small investors face high levels of informational friction). Figure 2

illustrates this unconventional result regarding competition and the importance of informational

friction. Panel (a) shows that all traders are worse off when competition increases, and Panel (b)

shows that when informational friction is small (τε is high), competition is no longer welfare-

decreasing.

6 Quality of Private Information and Informational Ef-

ficiency

Suppose that small traders have signals of better quality (i.e., higher τε). Will the price then

be more informative for them? The intuitive answer is yes because the price that aggregates

those more precise signals should likewise be more informative. In this section, we show that

this conventional wisdom is no longer necessarily valid when large traders create noise.

We proceed with a formal result that shows that better signals lead to less informational
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Figure 2: Effect of the extent of competition on welfare.

The graphs plot aggregate welfare (W(N)−W(N0)), small traders’ welfare (US(N)−US(N0)),
and large traders’ welfare (UL(N) − UL(N0)) as functions of N when τε = 0.01 (Panel (a))
and τε = 1 (Panel (b)). The welfare measures are normalized to zero at N = N0 = 12. Other
parameter values are v̄L = v̄S = 0, aS = 1, aL = 0.6 τv = 2, τu,S = 0.2, τu,L = 33, wL = N/cL,
cL = 2, and wS = 10.
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efficiency. In order to define fundamentals and measure informational efficiency properly, here

we invoke Assumption 1, which puts more structure on the investors’ values.

Proposition 4 (Better signals, less informational efficiency). Suppose that Assumption 1 holds.

Suppose that 2 ≤ N < N̄ ≡ 2aS/aL and h = wL/(NwS) < h̄ ≡ 2 − 2
N
− aL

aS
. For small enough

τϵ, τv, and τu,L, there exists an equilibrium in which both IFPE and IRPE decrease as signal

precision τε increases. Such equilibrium is unique, provided that condition (26) in the Appendix

holds.

The unconventional result stated in Proposition 4 follows from the trading complementarity.

When the signals become more precise, small traders face less adverse selection and provide more

liquidity. The improved liquidity makes large traders trade more aggressively, injecting more

noise in the price. The less informative price in turn reduces the small traders’ adverse selection

problem and thus further enhances liquidity. Such liquidity and noise feedback mechanism, as
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Figure 3: Effect of precision τε on informational efficiency IFPE.

The graph plots informational efficiency IFPE as a function of τε. Parameter values: N = 9,
v̄L = v̄S = 0, aL = 0.8, τu,S = 1, τu,L = 1, τv = 0.01, ρ = 0.9, wL = 0.2, and wS = 2.
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illustrated in Figure 1, can worsen informational efficiency to an extent that dominates the

positive effect brought by the improved signals.

The conditions stated in Proposition 4 ensure that the trading complementarity is strong

enough to achieve the unconventional result. The condition that h = wL

NwS
is small enough

can be understood as large traders representing a significant part of the market. That is,

their aggregate risk-bearing capacity 1/wL is large compared to the small traders’ capacity

1/wS. This condition reinforces steps (1) and (2) in Figure 1. Condition N < N̄ ensures

that large traders have market power, reinforcing the link between market liquidity and their

trade aggressiveness (step (4) in Figure 1). The remaining conditions, τε, τu,L, and τv are small

enough, and correspond to severe informational friction. They imply that the small traders

face substantial uncertainty in the asset values ex-ante and rely heavily on learning from the

price. They therefore reinforce steps (2) and (3) in Figure 1. Figure 3 provides a numerical

illustration that informational efficiency decreases in signal precision when the informational
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friction is severe, that is, when τε is low.14

We also note that the condition 2 ≤ N < 2aS/aL can only hold if aL < aS. The condition

ensures that the equilibrium of interest discussed above exists.15 The condition of aL < aS

also captures an economically interesting application in which large investors having stronger

preferences for ESG outcomes than small ones. See the discussion preceding Assumption 1.

Remark 3 (On Endogenous Information Acquisition). Suppose that the quality τε of private

information is not exogenously given; instead, small traders choose the precision τε, subject

to an increasing cost C(τε). Now, provided that the conditions of Proposition 4 are satisfied,

there is a complementarity in information acquisition. If other small traders acquire more

information, by Proposition 4, informational efficiency will decrease, thereby encouraging the

small trader of interest to acquire more information as well. This complementarity implies that

the main result of this section is not only robust but could also be reinforced when information

is endogenous.

7 Multiple Equilibria and Market Fragility

In this section, we study the implications of equilibrium multiplicity.

The trading complementarity depicted in Figure 1 suggests that expectations can be self-

fulfilling and lead to multiple equilibria. When large traders expect small traders to supply

more liquidity, they respond by trading more aggressively and inject more noise into the price.

As a result, small traders indeed find it optimal to provide more liquidity. Likewise, when
14We note that the strong complementarity needed to generate the unconventional result might also generate

multiplicity of equilibria. There is a tension between the condition wL

NwS
< h̄ for the result and the condition (26)

for uniqueness. One can nonetheless show that the set of parameters satisfying both conditions is non-empty.
In fact, the set of parameters used for Figure 3 is an example.

15The intuition for why aL < aS is needed is as follows. In the equilibrium described in Proposition 4,
as τϵ gets smaller, the price impact becomes very large. As a result, large traders trade very little, and the
price mostly reflects small traders value, p ≈ vS . The market-clearing condition implies that cov(⟨xS⟩, v) +
cov((vL − p)/(wL + λ), v) = 0. Since we have cov(⟨xS⟩, v) > 0 (small traders buy when the signals tells them
v is high, and vice versa when v is low), we need cov(vL − p, v) < 0 for the market to clear. For that we have
cov(vL − p, v) ≈ cov(vL − vS , v) = τ−1

v (aL − aS), which is negative iff aL < aS .
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small traders expect large traders to trade more aggressively, they supply more liquidity, which

encourages large traders to trade more aggressively. The market is therefore fragile in the sense

that market outcomes such as liquidity and informational efficiency can vary substantially

simply due to changes in traders’ expectations.

There are two insights from the analyses in this section. First, market power, in the presence

of informational friction, is a source of fragility in financial markets. Second, when multiple

equilibria exist, they can be ranked by liquidity and in the reversed order by informational effi-

ciency. The latter unveils a tension between equilibrium liquidity and informational efficiency.

We proceed by characterizing the sufficient conditions for equilibrium multiplicity, which

also underpins the first insight.

Proposition 5. For any N > 4, there exist constants w̄, τ 2, and τ̄2 > τ 2 such that, if

wL < w̄ and τ 2 < τL < τ̄2,

then there exist at least three distinct equilibria.

The condition τ 2 < τL ensures that the price is not too noisy, and thus small traders

rely on it for inferences. This reliance implies that changes in price informativeness affect how

much liquidity the small traders provide. The condition τL < τ̄2 ensures that the price is

not so informative that changes in the amount of noise injected by large traders still matter.

Finally, the conditions wL < w̄ ensure that large traders constitute a substantial fraction of

the market; that is, their aggregate risk-bearing capacity N/wL is large, and hence they have a

significant effect on price informativeness. In short, it is the combination of market power and

informational frictions that generate fragility. Recall from Proposition 1 that, if either of these

forces is weakened, then the equilibrium is unique.

Next, we turn to the tension between equilibrium liquidity and informational efficiency.

Proposition 6. Suppose the model’s parameters are such that there exist multiple equilibria.
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Consider two equilibria, A and B, and suppose that liquidity is lower in equilibrium A than

in equilibrium B. Then IRPE is greater in equilibrium A than in equilibrium B. Suppose in

addition that Assumption 1 holds. Then IFPE is also greater in equilibrium A, provided that

h = wL/(NwS) is small enough.

This proposition establishes that equilibria can be ranked by liquidity in one order and by

informational efficiency in the reversed order. This negative relationship between equilibrium

liquidity and informational efficiency, as far as we know, is not commonly found in other models

of fragility and hence can be served as a distinct empirical prediction of our mechanism.

One might be interested in the welfare rankings of equilibria A and B. Our numerical

analysis shows that equilibrium A (the one with lower liquidity) tends to have lower welfare in

the environment, with relatively less severe informational frictions (so that liquidity, not infor-

mational frictions, affects the welfare the most). The opposite is true when the informational

frictions are relatively high. Thus, in our model, liquidity is an imperfect proxy for welfare: It

is not always true that higher liquidity and higher welfare go hand-in-hand.

8 Interpretations of the Model

In this section, we provide three interpretations of the model. The goal of the exercise is to

map the general results of the model into more concrete applications.

8.1 A model with institutional and retail investors

The first interpretation consists of large institutional investors trading with small retail investors

in stock markets. There is ample evidence that institutional investors, unlike retail investors,

can affect prices and take their price impact into account when trading.16 The differences in

valuations of the stocks could be motivated by the fact that institutional investors’ demands
16See, e.g., Griffin, Harris, and Topaloglu (2003).

26



are affected by fund flows. As shown in Coval and Stafford (2007) and subsequent papers,

mutual funds tend to sell (buy) assets following outflows (inflows). To capture this, consider

the environment from Section 3. Assume that the asset’s fundamental value is v and that

vS = v, whereas vL = v + u. Here, the private value component u is meant to capture flow

concerns of institutional investors. Thus, a positive realization of u would generate additional

buying pressure from large traders, corresponding to fund inflows, while a negative realization

u corresponds to outflows. The flows u are known to institutional investors but not known to

retail traders at t = 0. As institutional investors are often better informed than retail investors,

we assume that the former know v perfectly.

8.2 A model with fast and slow traders

The second interpretation is about a model with fast and slow traders. There are three dates,

t ∈ {0, 1/2, 1}. Two trader groups, high-frequency traders (HFTs) and conventional (slow)

traders trade two assets: a risky asset (a stock) and a risk-free asset (a bond). The stock pays a

terminal dividend v ∼ N(0, τv) at time t = 1. The bond is the numeraire; hence its net return

is zero. There are L > 2 HFTs, indexed by i ∈ {1, 2, ..L}, and a unit continuum of slow traders,

indexed by j ∈ [0, 1]. Below we will map the HFTs to large traders in the model from Section

3 and conventional traders to small traders.

We emphasize two properties that distinguish HFTs from conventional traders in practice:

(i) they trade more frequently and (ii) they often employ strategies that exploit order flow

predictability. To capture (i), we assume that HFTs can trade at time t = 0 and t = 1/2, while

slow traders can trade only at t = 0. To capture (ii), we assume that there is an exogenous

order flow Z1/2 ∼ N(0, τz1/2) coming to the market at time t = 1/2 and that HFTs have a

common signal η = Z1/2 + ϵZ about this future order flow.17 The order flow Z1/2 generates

gains from trade both at t = 1/2 and t = 0. We also assume that HFTs have existing inventory
17Our qualitative results will not change if large traders have dispersed information about Z1/2.
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Z0 ∼ N(0, τz0), which could, for example, come from the order flow absorbed prior to t = 0. We

assume that Z0, Z1/2 and v are jointly normally distributed and independent of each other.18

Conventional traders are endowed with dispersed signals about the fundamental v: sj = v+ ϵj,

where ϵj’s are i.i.d. ϵj ∼ N
(
0, 1

τϵ

)
, and also independent of all other random variables in the

model. We assume that HFTs know v.19

Remark 4 (Trading at t = 1/2). We motivate the assumption that only HFTs trade at t = 1/2

by their superior trading speed. Alternatively, one can view the trading at t = 1/2 as trading

in a market that conventional traders do not have access to. For example, many market makers

get order flow from the brokers directly—a practice known as payment for order flow. Trading

at t = 1/2 can be viewed as competition for order flow Z1/2 among market makers.

The traders are risk-neutral and have quadratic inventory costs. They are fully rational,

that is, Bayesian, and take their price impact into account. Consider a large trader i who enters

period t = 1/2 with inventory xi0. A large trader i solves the following problem at t = 1/2:

max
x(p)

v · (x+ xi0)− px− w(x+ xi0)
2

2
, (12)

where the term w(x+xi0)
2

2
represents an inventory cost of holding x + xi0 units of asset. At time

t = 1/2, a large trader maximizes (1) by submitting the supply schedule x(p), taking his price

impact into account. As we show below, his value function at t = 1/2 will depend on his

inventory xi0 after the trade at t = 0 as well as the vector of inventories of other large traders,

x−i0 and the order flow Z. We denote this value function by Vi(xi0, x−i0 , Z).

At time t = 0 large trader i solves

max
x(p)

v · (Z0 + x) + E[Vi(Z0 + x, x−i0 (p), Z)|η]− px− w(Z0 + x)2

2
.

He takes into account his price impact as well as the impact of his trade on allocations to other
18Our results can be easily generalized to allow for correlation between Z0, Z1/2, and v.
19As with the model from Section 3, the main results still hold if HFTs do not know v. See Section IA.4.
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traders x−i0 (p).

Similarly, a conventional trader i solves the following problem at t = 0:

max
x(p)

(E[v|p, si]− p) x− wSx
2

2
. (13)

The trading is structured as a uniform-price double auction. Each trader k submits his net

demand schedule xk(p), where xk(p) > 0 (xk(p) < 0) corresponds to a buy (sell) order. The

market-clearing price p∗ is one at which the net aggregate demand is zero. Thus, at t = 1 we

have
N∑
i=1

xi (p
∗) +

∫ 1

0

xj (p
∗) dj = 0. (14)

At t = 1/2 we have
N∑
i=1

xi (p
∗) = Z. (15)

The equilibrium concept is Bayesian Nash, as in Kyle (1989) and Vives (2011): In every

period, traders maximize expected utility, given their information and accounting for their price

impact; equilibrium demand schedules are such that the market clears.

We are now ready to state the central result of this section.

Proposition 7. Consider two economies. Call economy A the one described in this section

and economy B the one in Section 3, with conventional traders being small traders, with

vS = v and inventory costs wSx
2/2 and HFTs being large traders, with vL = v − wZ0 −

wE[Z1/2|η]
(

2
L
− 1

L(L−1)

)
and inventory costs wx2. Economies A and B are equivalent in terms

of traders’ time-0 equilibrium demands and measures of liquidity and informational efficiency.

The aggregate time-0 welfare in economies A and B are different by a constant that does not

depend on N .

The equivalence established above implies that all results already established for economy

B are also applicable to the economy A. In particular, even though welfare in economy A
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differs from that in B, the results still apply because the difference does not depend on N .

We note that the model described here features traders with common values, and yet it is

equivalent to the model with private values in Section 3. The HFTs trade as though their

values consist of a common value component v and a private value component, which stems

from the HFTs’ hedging needs: −wZ0 captures their desire to hedge existing inventories and

−wE[Z1/2|η]
(

2
L
− 1

L(L−1)

)
for future order flow. The latter term highlights that a novel source

of noise in prices: HFTs make today’s price noisier by incorporating the randomness in future

order flow Z1/2 and the noise in the order flow signal η.

8.3 A commodity market

The third interpretation involves large and small traders trading a commodity (e.g., crude oil

or aluminium). The large traders are commodity producers. The small traders are firms that

buy the commodity to produce a final good.

The production technology employed by commodity producers is characterized by the convex

cost function

vL · y + wL
2
y2, (16)

where vL ∼ N(v̄L, 1/τvL) is a cost shock that is known to producers but not to firms. Thus,

producers are better informed about their own production technology than firms are. Producers

are risk-neutral and maximize their profit as follows:

p · y −
(
vLy +

wL
2
y2
)
.

The term y in this expression is the amount of the commodity sold or the net supply. The net

demand of producers is x = −y, and substituting this equation into the preceding display yields

(vL − p)x− wL
2
x2. (17)
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This profit expression conforms with the utility equation (1).

Firms j ∈ [0, 1] have a production technology characterized by the concave production

function of the final good,

Y (x) ≡ vS · x−
wS
2
x2, (18)

where vS ∼ N(v̄S, 1/τvS) is a productivity shock common to all firms. Such shock drives the

aggregate output of the economy and thus can be interpreted as the strength of the economy.

Firms have dispersed information about the economy’s strength. In particular, each firm j is

endowed with a signal

sj = vS + εj,

where εj ∼ N(0, 1/τε) is independent of all other random variables in the model. Firms are

risk-neutral and maximize their expected profits,

pg

(
vS · x−

wS
2
x2
)
− p · x, (19)

where pg = 1 is the price of the final good (endogenized in what follows) and p is the commodity’s

price. The expression (19) conforms with the utility equation (2).

We close the model by assuming that the final good is sold to consumers l ∈ [0, 1], who

have a linear Marshallian utility function over the amount z of the final good consumed and

over the remaining cash m = m0 − pgz left after purchasing the final good,

ul(z,m) = z +m0 − pgz,

where m0 represents each consumer’s endowment of cash. The existence of a continuum of

consumers implies that they are price takers and that the final good’s price is equal to their

marginal utility; thus, indeed, pg = 1.

The setting considered here is a natural framework for the study of commodities markets.
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The linear-quadratic specification of the cost and of the production functions is common in the

commodities literature.20 The information structure—with a cost shock known to producers

but not to firms and where firms have dispersed information regarding the strength of the

economy—is the same as in Sockin and Xiong (2015). Our setting generalizes Sockin and Xiong

(2015) by allowing producers to have market power, which is clearly relevant in commodities

markets.21

9 Discussion

In this section, we discuss evidence consistent with the core mechanism and the key empirical

and normative implications of our results.

9.1 Evidence on noise-creating large traders

The premise of the paper is that large traders make prices less informative. Our primary ex-

ample is large institutional investors who increasingly put more weights on firms’ ESG metrics

when constructing their investment portfolios. A notable example is the Net Zero Asset Man-

agers initiative, which is an international group of asset managers, with a total of $57.5 trillion

in assets under management, committed to achieve net zero alignment by 2050 or sooner.22 In

this context, the premise of our mechanism is that the demand of these large, ESG-conscious

investors would add noises to stock prices. We present supportive evidence in Appendix B
20See, e.g., Grossman (1977), Kyle (1984), Stein (1987), and Goldstein and Yang (2017).
21In the crude oil market, e.g., OPEC accounts for more than 40% of world production (Fantini (2015)); in

the aluminum market, the six largest producers account for more than 40% of world production (Nappi 2013).
22See https://www.netzeroassetmanagers.org/. More broadly, recent surveys on active asset man-

agers find that ESG is important and is not mainly for financial reasons. In a survey in 2021
by PwC, 79% of active asset managers say that “ESG risks are an important factor in investment
decision-making.” In another survey by Natixis, the two most cited motivations for ESG are “to
align investment strategies with organizational values” and “to influence corporate behavior.” Sources:
https://www.pwc.com/gx/en/issues/reinventing-the-future/take-on-tomorrow/download/sbpwc-2021-10-28-
Economic-realities-ESG.pdf and https://www.im.natixis.com/us/resources/2021-esg-investor-insight-report-
executive-overview.
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by showing that firms with higher ESG scores, presumably being held more by ESG-conscious

investors, have stock prices that are less informative about fundamentals.23

There is existing evidence consistent with noises created by large institutional investors.

Ben-David et al. (2021) show that ownership by the largest 10 institutions in the U.S. equities

market is associated with more noise in prices. Furthermore, Ben-David et al. show that, along

with concentration, these effects have become more pronounced over time. These largest insti-

tutional investors include mutual funds, and it is a widely used argument that fund redemption

leads to fire sales of portfolio stocks, adding noise in prices (Coval and Stafford, 2007; Edmans

et al., 2012).

Other likely candidates for noise-creating large investors are high-frequency traders. Using

Swedish equities data, Baron et al. (2019) document substantial and persistent concentration

in terms of trading revenues and volume among HFTs. In addition, the five fastest HFTs

consistently have higher risk-adjusted performance than others, suggesting that competition

is imperfect. Meanwhile, Weller (2018) uses price-jump ratio at earnings announcement and

Gider et al. (2019) use the measure of price informativeness developed in Bai et al. (2016) to

show that HFTs activities reduce price informativeness about firm fundamentals.

9.2 Empirical predictions

Our paper delivers two main set of testable predictions. The first set of predictions is in regards

to the market power of noise-creating large traders. Proposition 8 in the Appendix stipulates

that an increase in large traders’ market power (a decrease in N), due to, for example, a

merger between two large institutional investors, leads to higher price informativeness and

lower liquidity. To the best of our knowledge, these predictions have not been directly tested.

The second set of predictions is about the effect of quality of private information on in-

formational efficiency. Proposition 4 suggests that an increase in quality of private signals
23See also Goldstein et al. (2022) for a competitive REE model with financial and green investors.
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could lower price informativeness when informational friction is large enough. This result helps

explain the evidence presented by Farboodi et al. (2020) and Bai et al. (2016); these authors

show that, despite the prices of stocks in the S&P 500 index becoming more informative in

recent decades, the price informativeness of stocks that are not in that index has fallen. This

evidence is puzzling when one considers that technological progress has made information about

all stocks more easily available (so the quality τε of private information should have increased,

on average), which suggests that price informativeness should likewise have increased for all

stocks. One implication of our model is that the opposite may be true for stocks that are less

transparent—namely, those with lower quality of private information (τε) and of public infor-

mation (τS). Stocks of that type are likely to be smaller, less liquid, and less “glamorous” than

those covered by the S&P 500 index.

9.3 Implications on transparency and competition policies

Our paper bears implications for transparency policies, which aim to reduce informational

frictions, and competition policies, which promote efficient trading by reducing large traders’

market power. Our key message is that in order to achieve any one of the policy goals, both

market characteristics, namely, informational friction and market power, have to be considered.

In particular, policies that promote transparency could reduce price informativeness when large

traders have substantial market power.24 Also, promoting competition could lead to lower

welfare if informational friction is severe enough.

Regulations such as the Sarbanes–Oxley Act and Regulation Fair Disclosure (Reg FD)

have been made with the aim of increasing the transparency publicly traded firms to make

market information widely accessible. We interpret improved transparency as an increase in

the precision of investors’ signals in our model. The argument is that better disclosure of
24Goldstein and Yang (2019) also show that better disclosure of public signal can harm price informativeness

when there are multiple dimensions of information. Our mechanism is different, as we have single dimension of
information and emphasize the effect of market power.

34



firms’ balance sheet in the Sarbanes-Oxley Act allows investors to better evaluate the firms’

fundamental values. In addition, as Reg FD prohibits selective disclosure to certain investors,

such as large institutional investors, it can be seen as leveling the playing field and improving

the small investors’ information. Then, Proposition 4 implies that transparency can harm

price informativeness, thus paradoxically hurting small investors’ overall ability to predict firm

fundamentals. This suggests that when designing transparency promoting policy, the industrial

organization aspect of financial markets should be taken into account.

It is a widely held view that competition is beneficial for welfare, and this view underlies

antitrust policies worldwide.25 In light of the increasing concentration in financial markets,

regulators like the SEC have expressed their concerns of market power in financial markets (see

footnote 5). However, our paper shows that this received wisdom need not be valid. In such

circumstances, Proposition 3 states that (see also Figure 2) increased competition can reduce

the welfare not only of large traders with market power but also of small traders—that is, by

making prices less informative for them. Meanwhile, the result in Section 7 also highlights a

novel financial stability motive of reducing market power in financial markets. Overall, both

of these unconventional welfare and fragility results arise when informational friction in the

financial market is severe enough, highlighting the importance of considering informational

friction in the design of competition policies.

9.4 Robustness and extensions

We end this section with a brief discussion of the additional analyses about the robustness of

our results and extensions of the model. These analyses are reported in the Internet Appendix.

We establish the critical importance of large traders’ being strategic, that is, not taking

prices as given (Section IA.1). Then, we show that our mechanism remains at work when

ρ → 1, that is, large traders creating little noise to small traders (Section IA.2). Finally, we
25See, e.g., the “Guide to Antitrust Laws,” available on the U.S. Federal Trade Commission website

(https://bit.ly/3wMKGKI).
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demonstrate that our main results continue to hold under the following modifications of the

model: when small traders receive dispersed signals about asset fundamental v instead of their

value vS (Section IA.3), when large traders also learn from prices (Section IA.4), when traders’

private values are heterogeneous (Section IA.5), when there is an extra round of trading (Section

IA.6).

10 Conclusion

Many financial markets nowadays are dominated by a handful of large investors. The market

power possessed by these investors has attracted the attention of regulators worldwide. In this

paper, we provide a framework to analyze these large investors’ impact on the functioning of

financial markets and welfare. Crucially, we posit that these large investors sometimes trade

for non-fundamental reasons, a phenomenon supported by evidence. As a result, they create

noise for other, small investors who glean information from prices.

Our analysis focuses on the interaction between noise-creating large investors and small

investors, from which novel empirical and normative implications are derived. There is a com-

plementarity in their trading behavior: When large investors trade more aggressively, more

noise is injected in the price. The resulting less informative prices induce small investors to

provide more liquidity, which feeds back into more aggressive trading by large investors. We

show that this complementarity can lead to two unconventional implications, namely, com-

petition reduces welfare; and better information harms informational efficiency. Thus, our

results suggest that competition policy should take into account of information friction and

transparency policy should depend on the market power of large investors.

The model can be extended in several directions. Incorporating multiple assets would allow

one to examine cross-asset trading complementarity and its implication. It would also be of

interest to explore a dynamic extension, possibly adding an inter-temporal dimension to the
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feedback mechanism. These extensions are left for future research.
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A Proofs

We start with the following lemma that is a useful building block for our results.

Lemma 3. Large traders’ values vL can be decomposed as follows:

vL = A+BvS + Cζ,

where B = ρ
√
τS/τL, C =

√
(1− ρ2)/τL, and A = v̄L −Bv̄S. Also, ζ ∼ N(0, 1) is independent

of vS.

Proof of Lemma 3. One can check by direct calculation that ζ = 1/C(vL −A−BvS) has a
mean of 0, a variance of 1, and a covariance (with vS) of 0. The combination of zero covariance
and joint normality implies independence.

A.1 Proof of Lemma 1

Proof of Lemma 1. The price is informationally equivalent to βSvS + NβvL. After sub-
stituting vL from Lemma 3 and undertaking some rearrangement, we obtain that the price is
informationally equivalent to π = vS+(1/

√
τπ)ζ, where ζ = 1/C(vL−A−BvS) (see Lemma 3)

and
τπ =

τL
1− ρ2

(
ρ

√
τS
τL

+
βS
Nβ

)2

. (20)

The formula for informational efficiency now follows directly from the projection theorem. It
can be seen from the formulas that both τπ and IRPE are decreasing in β.

The optimal demand of a small trader j can be written as xj = (E[vs|sj, p]− p)/wS. It then
follows that γS = 1

wS

(
1− ∂E[vs|sj ,p]

∂p

)
. One can write E[vs|sj, p] = τπ

τS+τε+τπ
π + ..., where “...”

stands for terms that do not depend on p. One can also write π = γS+Nγ

βS+Nβρ
√
τS/τL

p + ..., from
which it follows (after some rearrangement) that

γS =

1
wS

− 1
wS

τπ
τS+τε+τπ

Nγ

βS+Nβρ
√
τS/τL

1 + 1
wS

τπ
τS+τε+τπ

1

βS+Nβρ
√
τS/τL

.

Thus we can see that γS is decreasing in β.

A.2 Proof of Lemma 2

Proof of Lemma 2. The first-order condition for a large trader i yields (see, e.g., Kyle
1989; Vives 2011) xi = (vL − p)/(wL + λ); here 1/λ is the slope of the residual supply, 1/λ =
γS + (N − 1)γ. The second-order condition is satisfied if and only if λ > −wL/2. Hence
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β = γ = 1/(wL + λ), and λ is determined by

1

λ
=

N − 1

wL + λ
+ γS.

It is easy to show that this equation’s solution that satisfies λ > −wL/2 is decreasing in γS.
We can therefore conclude that also β is decreasing in γS.

A.3 Proof of Theorem 1

Proof of Theorem 1. The first-order conditions from Lemmas 1 and 2 can be summarized
as follows:

xj =
E[vS|sj, p]− p

wS
and xi =

vL − p

wL + λ
.

The second-order condition for large traders, λ > −wL/2, must also hold.
According to Lemma 1,

γS =

1
wS

− 1
wS

τπ
τS+τε+τπ

Nγ

βS+Nβρ
√
τS/τL

1 + 1
wS

τπ
τS+τε+τπ

1

βS+Nβρ
√
τS/τL

.

Given that E[vs|sj, p] = τε
τS+τε+τπ

sj + (terms that do not depend on sj), we can also derive the
equality βS = 1

wS

τε
τS+τε+τπ

. The first-order conditions for large traders imply that β = γ =
1/(wL + λ).

Next we express the coefficients βS, γS, β, and γ through the endogenous variable δ =√
τπ/τε. It is immediate that

βS(δ) =
1

wS

τε
τS + τε(1 + δ2)

.

Theorem 1’s expression for λ(δ) follows if we substitute βS = βS(δ) and β = 1/(wL + λ) into
(20) and express λ. The terms β(δ) and γ(δ) are related to δ as

β(δ) = γ(δ) =
1

wL + λ(δ)
.

From that expression it follows, with regard to γS(δ), that

γS =

1
wS

− 1
wS

τεδ2

τS+τε(1+δ2)
Nγ(δ)

βS(δ)+Nβ(δ)ρ
√
τS/τL

1 + 1
wS

τεδ2

τS+τε(1+δ2)
1

βS(δ)+Nβ(δ)ρ
√
τS/τL

. (21)

It remains to derive expressions for α(δ) and αS(δ). The first-order condition for a large
trader implies that α(δ) = 0. Given that E[vs|sj, p] = τS

τS+τε+τπ
v̄S+(terms that depend on sj and p),
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we have
αS(δ) =

1

wS

τS
τS + τε(1 + δ2)

v̄S.

The polynomial equation (7) for δ can be obtained by rearranging 1
λ(δ)

= γS(δ)+(N −1)γ(δ).26

We now prove that there is at least one solution to (7) such that λ > −wL/2. Consider
a unique δ∗ satisfying λ(δ∗) = −wL/2. We can show that the polynomial (7) evaluated at
δ = δ∗ is negative; at the same time, the polynomial’s leading coefficient is positive. Hence
the polynomial becomes positive for large enough δ. By the intermediate value theorem, there
exists a δ∗∗ > δ∗ such that the polynomial is zero. Since λ(δ) is increasing for δ > δ∗, we have
λ(δ∗∗) > −wL/2.

A.4 Proof of Proposition 1

Proof of Proposition 1. The equilibrium δ solves the following system of equations:

λ =
NwS√
τL

√
τε(1− ρ2)

(
δ − ρ√

1− ρ2

√
τS
τε

)(
δ2 +

τS + τε
τε

)
− wL, (22)

λ(wL +NwS + λ)− wS

(
1 + δ

(
δ − ρ√

1− ρ2

√
τS
τε

))
(wL + 2λ) = 0, (23)

λ > −wL
2
. (24)

The idea behind the proof is as follows. Equation (22) gives the explicit expression for λ as a
function of δ. We then combine (22) and (23) to obtain an explicit expression for δ(λ). Finally,
we determine how many times the two functions intersect.

We derive an explicit expression for δ through λ by using (23) to write δ(δ−(ρ/
√

1− ρ2)
√
τS/τε)

as a function of λ and δ, which we can substitute into (22); we then derive δ from the resulting
expression. Following these steps yields

δ =
(2λ+ wL)(NρwS(τS + τε)

√
τS/τε +

√
τL
√
τε(λ+ wL))

N
√
1− ρ2(λτε(λ+NwS + wL) + τSwS(2λ+ wL))

. (25)

One can show that this function is decreasing for large enough N . The function λ(δ) given
by (22) increases with δ for δ > ρ/

√
1− ρ2)

√
τS/τε. So for such δ, the functions λ(δ) and δ(λ)

intersect at most once. There is no solution to the system with δ ≤ (ρ/
√
1− ρ2)

√
τS/τε because,

in that case, λ(δ) < −wL, so (24) does not hold.
26Perhaps the shortest path to the polynomial (7) is as follows. Write γS = 1

wS
− 1

wS

τπ
τS+τε+τπ

Nγ+γS

βS+Nβρ
√

τS/τL
.

Then observe that 1
wS

τπ
τS+τε+τπ

= βSτπ/τϵ = δ2βS . Then, use (20) to express βS/Nβ = δ/
√

τL/τε
1−ρ2 − ρ

√
τS
τL

.

After simplification, one gets γS = 1
wS

−δ(δ−ϕ)(Nγ+γS), where ϕ = ρ√
1−ρ2

√
τS
τε

. Then, substitute Nγ+γS =

1/λ+ 1/(wL + λ) and γS = 1/λ− (N − 1)/(wL + λ). After rearrangement, one obtains (7).
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A.5 Proof of Proposition 2

Proof of Proposition 2. First, we write realized total welfare as

RTW ≡ vS

∫ 1

0

xj dj −
wS
2

∫ 1

0

(xj)
2 dj + vL

N∑
i=1

xi −
wL
2

N∑
i=1

x2i

= (vS − vL)⟨xS⟩ −
wS
2

∫ 1

0

(xj)
2 dj − wL

2N
⟨xS⟩2.

Note that
∫ 1

0
(xj)

2 dj =
∫ 1

0
(xj − ⟨xS⟩)2 dj + ⟨xS⟩2 and vS − vL = xFBS (wS + wL/N); hence, after

applying expectations and some rearranging, the preceding expression for RTW transforms
to (8).

Given the aggregate demands of large and small traders, the equilibrium price can be ex-
pressed as p = ⟨vS⟩ − wS⟨xS⟩ = vL + (wL + λ)⟨xS⟩/N . From this (after some rearrangement),
one obtains equation (9). Equation (10) now follows directly from (4).

A.6 Proof of Proposition 3

Proof of Proposition 3. The decomposition follows by substituting (9) into (10). The
comparative statics of WL1 and WL4 follow because ψ increases with N whereas βS is decreasing
in N (as follows from Proposition 8). For the comparative statics of WL2, note that E[(v̄S −
vS)

2] = 1/τ−τε/τ 2; this equality is a decreasing function of τ (which, in turn, decreases with N)
for 1/τ < 1/2τε. Thus WL2 =

ψ2E[(vS−vS)2]
2(wS+wL/N)

increases with N for Var(vS|sj, p)−1 = τS+ τε+ τπ >

2τε. Clearly, the last inequality holds if τε < τS.
We now turn to the sufficient conditions for WL to be increasing in N . Since under

merger/split comparative statics of WL and welfare is the same, we examine the welfare and
derive conditions under which it decreases in N . First, we have

RTW = (vS − vL)⟨xS⟩ −
wS
2

∫ 1

0

(xj)
2 dj − wL

2N
⟨xS⟩2

= (vS − vL)⟨xS⟩ −
wS
2
β2
Sτ

2
ϵ −

wS + wL/N

2
⟨xS⟩2.

We then substitute ⟨xS⟩ = (⟨vS⟩ − vL)/(wS + (wL + λ)/N) and ⟨vS⟩ = τπ/(τS + τϵ + τπ)π +
τϵ/(τS + τϵ + τπ)vS + τS/(τS + τϵ + τπ)v̄S, and compute E[RTW].

Then we denote wL/wS = Na and consider the asymptotics when a is small. We write
δ = d0 + d1a+ O(a2). We then substitute it in the equation (7) and match the coefficients for
the same powers of a to find d0 = ϕ and d1 = (N−1)κ

(N−2)(θ+ϕ2)
is a solution, and that for such solution

the SOC λ > −wL/2 is satisfied (we use the same notation as in the proof of Proposition 5).
It follows from Proposition 1 that such equilibrium is unique for large enough N .
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Substituting the expression for δ to our closed-form expression E[RTW] and then differen-
tiating the resulting expression with respect to N yields

d

dN
E[RTW] = −a

(1− ρ2)
2
τϵ
(
(ρ2 − 1) τϵ + ρ

√
τLτS − τS

)
(N − 2)2wS ((1− ρ2) τϵ + τS)

3 +O
(
a2
)
,

which is negative iff
(
(ρ2 − 1) τϵ + ρ

√
τLτS − τS

)
> 0. The statement follows.

A.7 Proof of Proposition 4

Proof of Proposition 4. The idea behind this proof is to consider the limiting equilibrium
when τv → 0 and τε → 0.

Let x ≡ √
τπ and write x = x0+x1τε+O(τ

2
ε ). Let y ≡ λτε and write y = (NwS/

√
τL)(x

√
1− ρ2−

ρ
√
τS)(x

2 + τS + τε) − wLτε. Substituting these expressions for x and y into (7) and then col-
lecting zero- and first-order terms in τε, we obtain two potential solutions for the coefficient
x0.

Case 1: N
√
1− ρ2 (τS + x0

2)−2
√
τLx0 = 0. Solving this quadratic equation we get that in

the limit as τv → 0 only one root is such that the SOC λ > −wL/2 might hold. This is root is
given by x0 = 2

NaL

√
1

τu,La2
L

+ 1

τu,Sa2
S

+ O(τv). Note that we substituted expressions τL =
τu,Lτv

a2Lτu,L+τv
,

τS =
τu,Sτv

a2Sτu,S+τv
and ρ =

√
τu,Lτu,S(

τu,L+
τv
a2
L

)(
τu,S+

τv
a2
S

) . We then substitute this solution into (7) and,

matching first-order terms in τϵ we find x1 = − N(2NwS(aL−aS)+wLaS)

4

(
wSaS(NaL−2aS)

√
τu,Lτu,S

τu,La2
L
+τu,Sa2

S

) +O(τv).

We then verify the SOCs, y+wLτϵ/2 > 0. We compute y+wLτϵ = −4(τu,Lτu,SwSaS(NaL−2aS))

N2(τu,La2L+τu,Sa2S)
+

O(τϵ) +O(τv). The leading term is positive if and only if

N < N̄ = 2aS/aL.

Next, we compute d/dτϵ(τπ + τϵ) = 1 − 2NwSaL−2NwSaS+wLaS
NwSaL−2wSaS

+ O(τϵ) + O(τv). The leading
term is negative iff

wL
NwS

< h̄ = 2− 2

N
− aL
aS
.

The statements about IRPE follow because d/dτϵ(τπ + τϵ) < 0 implies that IRPE is decreasing
in τϵ.

Finally, we compute d/dτϵ(V ar(v|sj, p)). We invoke Lemma 4 for the expression for V ar(v|sj, p).
Using this expression, we get

τ 2u,L
dV ar(v|sj, p)

dτϵ
=
N4(NwS(aL − 2aS) + aS(wL + 2wS))

16wS(NaL − 2aS)
+O(τu,L) +O(τv) +O(τϵ).
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The leading term is positive if and only if NwS(aL − 2aS) + aS(wL + 2wS)) < 0 which is
equivalent to wL

NwS
< h̄.

Case 2: x0 = ρ
√
τS/
√

1− ρ2. Substituting x0 to (7), we get a quadratic equation to solve
for x1. The discriminant of this equation, for small τv is negative if and only if

N2a2L
(
2NwLwS + (N − 2)2w2

S + w2
L

)
+ w2

La
2
S < 2NwLaLaS((3N − 2)wS + wL). (26)

Thus, if the above condition holds, the equilibrium with x0 = ρ
√
τS/
√

1− ρ2 does not exist.

Lemma 4. For a given price, the conditional variance of fundamental value is

Var(v|p, sj) = τ−1
η +

(
kS + kLρ

√
τS/τL − kL

√
(1− ρ2) τπ/τL

)2
τS + τϵ + τπ

. (27)

Moreover, for sufficiently small h = wL

wSN
, ∂Var(v|p, sj)/∂τπ < 0.

Proof of Lemma 4. Lemma 5 (to follow) allows us to write v = kSvS + kLvL+ η, where η ∼
N(η̄, τη)

−1 is independent of vS and vL. Lemma 3 allows us to write vL = A+BvS +Cζ, where
ζ ∼ N(0, 1) is independent of vS. Moreover, from Lemma 1 it follows that ζ = (π − vs)

√
τπ.

Hence
Var(v|p, sj) = Var(η + kLA+ vS(kS + kL(B − C

√
τπ)) + kLC

√
τππ|π, sj).

Now note that η is independent of both vS and vL, hence it is also independent of their linear
combination π. It is also independent of sj, since sj is a linear combination of vS and ϵj and
the latter is independent of everything else. Taking this into account, after some algebraic
manipulation, the last displayed equation can be rearranged to yield (27).

For the last statement, we directly compute

sign

(
∂Var(v|p, sj)

∂τπ

)
= −sign

(
kS + kLρ

√
τS/τL − kL

√
(1− ρ2) τπ/τL

)
,

and one can show that kS+kLρ
√
τS/τL−kL

√
(1− ρ2) τπ/τL → kS > 0 as h→ 0. The statement

then follows.

Lemma 5. Suppose that vS = aSv + uS and vL = aLv + uL, where uS ∼ N(0, τ−1
u,S), uL ∼

N(0, τ−1
u,L) and v ∼ N (v̄, τ−1

v ) are jointly normally distributed and independent. Then one
can express v = kSvS + kLvL + η, where η ∼ N

(
η̄, τ−1

η

)
is independent of vS and vL and the

coefficients are given by kS =
a2Sτu,S

τV +a2Sτu,S+a
2
Sτu,L

, kL =
a2Lτu,L

τV +a2Sτu,S+a
2
Sτu,L

, η̄ = τV v̄
τV +a2Sτu,S+a

2
Sτu,L

and
τη = τV + a2Sτu,S + a2Lτu,L.

Proof of Lemma 5. The idea is to project v on vS and vL. Compute

E[v|vL, vS] =
τV v̄

τV + a2Sτu,S + a2Sτu,L
+

a2Sτu,SvS
τV + a2Sτu,S + a2Sτu,L

+
a2Lτu,LvL

τV + a2Sτu,S + a2Sτu,L
.
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We also have that η = v − E[v|vL, vS] is independent of vS and vL and

Var (η) = Var (η|vS, vL) + Var (E [η|vS, vL])

=
1

τV + a2Sτu,S + a2Lτu,L
.

The statements of the lemma then follow.

A.8 Proof of Proposition 5

Proof of Proposition 5. Let

θ ≡ τS + τε
τε

> 1, ξ ≡ ρ

√
τS
τL
, κ ≡

√
τL/τε
1− ρ2

> 0,

ψ ≡ wL
NwS

> 0, ϕ ≡ κξ =
ρ√

1− ρ2

√
τS
τε
,

Q ≡ −4Nξ + 8ξ + 4ψ, T ≡ 16N2ξψ

(
ξ − 2

N

)
(ψ + 2),

l± ≡ −G±
√
G2 + F

2
, G ≡ 1 +

2(θ − 2)

N
> 1, F ≡ 2ψ + ψ2 > 0.

Assume that the following inequalities hold,

Q < 0, ξ <
1

N
, Q2 + T > 0, ψ < 1, N > 4. (28)

Also, let l ≡ 2λ+wL

2NwS
> 0. Then (25) can be rewritten as

δ = δ(l) ≡ 2κ
N

l(l + θξ + ψ/2)

(l − l+)(l − l−)
, (29)

and the equilibrium is the solution to the system consisting of (29) and

l = l(δ) ≡ (δ2 + θ)(δ − ϕ)

κ
− ψ

2
.

Consider all solutions to the equation

δ(l) = ϕ. (30)

If the conditions (28) hold, then there exist two solutions to (30), which are given by

L± =
−Q±

√
Q2 + T

8N(2/N − ξ)
.

44



Furthermore, both solutions L± > l+.27 The existence of two solutions to (25) implies that
the function δ(l) attains a local minimum in the region l > l+ and that this minimum is less
than ϕ.

Also, consider all solutions to
δ(l) =

κ
N
.

There are two solutions to this equation, as well—provided that (28) holds. Let Lm denote the
maximal solution. Then

Lm =
1

2
(Qm +

√
Q2
m + Tm) > L+,

where
Qm ≡ 2(θ − 1)

N
+ 1− 2θϕ

κ
− ψ and Tm ≡ −(ψ2 + 2ψ).

If
Lm < l

(
κ
N

)
=

(κ2 + θN2)(κ −Nϕ)

κN3
− ψ

2
≡ lm, (31)

then there are at least three equilibria.
The condition Q < 0 is equivalent to

ξ >
ψ

N − 2
. (32)

The condition Q2 + T > 0 holds as long as

ξ >
2ψ(N(ψ + 3)− 2)

N(N(ψ + 1)2 − 4) + 4
and N(N(ψ + 1)2 − 4) + 4 > 0.28 (33)

Given (28), the second inequality in (33) holds. Note that

2ψ(N(ψ + 3)− 2)

N (N(ψ + 1)2 − 4) + 4
<

8ψ

N − 4
>

ψ

N − 2
.

Therefore, both (32) and (33) hold if the following weaker condition also holds:

ξ > ξ
1
≡ 8ψ

N − 4
.

The preceding expression can be written as

τL <
ρ2τS

ξ2
1

≡ τ̄2. (34)

27It is easy to see that both solutions are positive. However, δ(L) = ϕ > 0 is positive only if L > l+.
28Indeed, Q2 + T = 16ξ2(N(N(ψ + 1)2 − 4) + 4)− 32ξψ(N(ψ + 3)− 2) + 16ψ2. Condition (33) ensures that

the first two terms are positive.
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Now suppose that
lm −Qm > 0.

Then (31) holds.29 The inequality just displayed can be written as(
κ2

N2
− θ

)(
1

N
− ξ

)
> 1− 2

N
− ψ

2
.

Assume that
ξ <

1

2N
.

Then ξ is greater than (κ2/N2 − θ)(1/2N), and the constraint holds, provided that

κ2

N2
− θ > 2N − 4−Nψ.

This inequality is equivalent to

τL > (1− ρ2)τεN
2(2N − 4−Nψ + θ).

The preceding expression holds if the following stricter inequality also holds:

τL > (1− ρ2)τεN
2(2N − 4 + θ).

The constraint ξ < 1/2N implies that

τL > 4N2ρ2τS.

In turn, those two constraints hold provided that

τL > τ 2 ≡ max{4N2ρ2τS, (1− ρ2)τεN
2(2N − 4 + θ)}. (35)

It is clear that
τ 2 > 4N2ρ2τS > τ̄1.

The final step is to derive the conditions under which τ 2 < τ̄2. We have

√
τ 2 <

ρ
√
τS

ξ
1

=
ρ
√
τS

8ψ
(N − 4),

which is equivalent to
wL < w̄ ≡ wSρ

N(N − 4)

8

√
τS
τ 2
. (36)

29The expression (31) is equivalent to Q2
m + Tm − (2lm −Qm)2 = 2lm(2Qm − 2lm) + Tm < 0, which is true.
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A.9 Proof of Proposition 6

Proof of Proposition 6. The proposition follows by noting that both IRPE = τS+τε(1+δ
2)

τS
and λ (as given by (39)) are increasing functions of δ, which is a decreasing function of N (see
the proof of Proposition 8). The statement about IFPE follows because for small enough h,
∂Var(v|p, sj)/∂τπ < 0 (Lemma 4).

A.10 Proof of Proposition 7

We start with the following lemma.

Lemma 6. The value function of large trader i at t = 1/2 is given by

Vi
(
xi0, x

−i
0 , Z

)
= xi0v +

w (2k − 1) (x∗i )
2

2
− w (xi0)

2

2
,

where k = L−1
L−2

, x∗i =
Zk+x−i

0 −(L−1)xi0
kL

, and x−i0 ≡
∑

j ̸=i x
j
0.

Proof of Lemma 6. From the FOC and the fact that λ = wL

L−2
it follows that

v − p = kwx∗i + wxi0. (37)

Therefore

(v − p)x∗i −
w (x∗i + xi0)

2

2
= (kwx∗i + wxi0)x

∗
i −

w (x∗i + xi0)
2

2

=
w (2k − 1) (x∗i )

2

2
− w (xi0)

2

2

Summing up (37) across investors we get

v − p =
1

L

(
kwZ + w

∑
i

xi0

)
.

It then follows
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x∗i =
1

kw

(
v − p− wxi0

)
=

1

kw

(
w
Zk + xi0 + x−i0

L
− wxi0

)
=

1

k

(
Zk + xi0 + x−i0

L
− xi0

)
=
Zk + x−i0 − (L− 1)xi0

kL
.

Having established equilibrium value function at t = 1/2, we proceed to t = 0. At t=0,
HFT i solves

v(Z0 + x) + E[Vi(x, x
−i
0 (p), Z)|η]− px− w(Z0 + x)2

2
→ max

x(p)
.

Note that post-trade allocations to other traders x−i0 (p) depend on market-clearing price. HFTs
take this into account. The price at t = 0 is a noisy version of η, hence it is not useful in
predicting Z. Thus, the conditional expectation above only includes η.

The key is that, as we show below, the FOC in the symmetric equilibrium can be written
as

v − wZ0 − w
E[Z|η]
L

(
1− 1

L− 1

)
− p− λx− 2wx = 0. (38)

To derive it, we write the t = 0 FOC as follows:

v − wZ0 +
∂E[Vi|η]
∂x

+
∂E[Vi|η](x, x−i0 (p))

∂x−i0

−1︷ ︸︸ ︷
∂x−i0 (p)

∂p︸ ︷︷ ︸
−(L−1)γ

∂p

∂x︸︷︷︸
=λ

−p− λx− wx = 0.

Thus, the FOC can be written as

v − wZ0 +
∂E[Vi|η]
∂x

− ∂E[Vi|η](x, x−i0 (p))

∂x−i0

− p− λx− wx = 0.

Using Lemma 6, we compute the first two terms in the equation above.

∂E[Vi|η]
∂x

= −w (2k − 1)
E[Z|η]k + x−i0 (p)− (L− 1)x

kL

L− 1

kL
− wx

= (in equilibrium)

= −wE[Z|η]
L

− wx
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In the last equation above we have used the fact that in the symmetric equilibrium (L−1)x∗ =
x−i0 . Similarly, for the second term,

∂E[Vi|η]
∂x−i0

= w (2k − 1)
E[Z|η]k + x−i0 (p)− (L− 1)x

kL

1

kL

= (in equilibrium)

= w (2k − 1)
E[Z|η]
L

1

kL

=
wE[Z|η]
L(L− 1)

From this we obtain (38).
We now check the second-order conditions. SOC:

∂2E[Vi|η]
∂x2

= − ∂

∂x

(
w (2k − 1)

Zk + x−i0 (p)− (L− 1)x

kL

L− 1

kL
+ wx

)
= −

(
w (2k − 1)

−1− (L− 1)

kL

L− 1

kL
+ w

)
= −w

(
− (2k − 1)

1

k

L− 1

kL
+ 1

)
= −w (1− 1/k)

−∂
2E[Vi|η](x, x−i0 (p))

∂x∂x−i0

= − ∂

∂x

(
w (2k − 1)

Zk + x−i0 (p)− (L− 1)x

kL

1

kL

)
= −

(
w (2k − 1)

−1− (L− 1)

kL

1

kL

)
= −

(
w (2k − 1)

−L
kL

1

kL

)
=

(
w (2k − 1)

1

k

1

kL

)
= w

1

k (L− 1)

second derivative = −
(
wL (1− 1/k)− wL

k (L− 1)
+ 2λ+ wL

)
It can be seen that if the SOC holds in the alternative economy (i.e., wl+2λ > 0), it also holds
in the original economy.

We note that equivalence of FOCs in the economy from Section 3 implies only that marginal
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utilities are the same across two economies. The utilities, and thus the welfare, might differ.
However, it is straightforward to show that they differ by a constant that is not affected by the
comparative static exercises performed in the paper.

A.11 Proof of Proposition 8

Proposition 8. In equilibrium, IRPE is decreasing in N , whereas liquidity L is increasing in
N . Suppose in addition that Assumption 1 holds. If h ≡ wL

NwS
is sufficiently low, IFPE is

decreasing in N as well.

Proof of Proposition 8. The equilibrium is a solution to the system (22)–(24), which can
be written as follows:

λ = L(δ;N) ≡ NwS
κ

(δ − ϕ)(θ + δ2)− wL; (39)

δ = D(λ;N) ≡ h

(
λ(wL +NwS + λ)

wS(wL + 2λ)

)
. (40)

Here,

κ ≡

√
τL/τε
1− ρ2

, ϕ ≡ ρ√
1− ρ2

√
τS
τε
, θ ≡ τS + τε

τε
,

and δ = h(x) is the inverse of 1 + δ(δ − ϕ) on δ > ϕ.
Lemma 7 (to follow) implies that λ > 0 in equilibrium. Yet because that inequality is not

possible when δ < ϕ, we may look for the curves (L(δ;N) and D(λ;N)) to intersect in the
region where δ > ϕ and λ > 0.

Since the function 1+δ(δ−ϕ) is strictly increasing for δ > ϕ, it follows that the function h(x)
is both well-defined and strictly increasing. The equilibrium is therefore the intersection of the
curves λ = L(δ;N) and δ = D(λ;N). Moreover, it is easy to see that ∂L

∂δ
> 0 and ∂D

∂λ
> 0 for

δ > ϕ, so both curves are strictly upward sloping for a given N . We next compute

∂L

∂N
=
wS(δ

2 + θ)(δ − ϕ)

κ
− w′

L(N),

which is positive if wL does not depend on N or if wL = w1N (in the second case, ∂L
∂N

= λ
N
> 0).

Analogously, we compute

∂D

∂N
= h′(·)×

{
λ

2λ+wL
if wL does not depend on N and

λ2(w1+2wS)
wS(2λ+Nw1)2

if wL = w1N.

This expression is positive.
Hence, an infinitesimal increase in N shifts the curve L(δ;N) upward and the curve D(λ;N)
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rightward. Their new intersection will therefore be below and to the left of the old one.30 Thus
we have

dλ

dN
< 0 and dδ

dN
< 0.

Since IRPE = τS+τε(1+δ
2)

τS
is increasing in δ and does not depend directly on N , and since L is

inversely related to λ, it follows that

dIRPE

dN
< 0 and dL

dN
> 0.

That dIFPE/dN < 0 follows because IFPE depends on N only through τπ, and by Lemma 4
(see section A.7), IFPE increases in τπ for sufficiently small h.

Lemma 7. The equilibrium price impact λ is positive.

Proof. Rewrite (7) as

λ =
wS(1 + δ(δ − ϕ))(wL + 2λ)

wL +NwS + λ
.

Then δ > ϕ, because otherwise λ < −wL and the second-order condition 2λ + wL > 0 would
not hold. Therefore, 1 + δ(δ − ϕ) > 0. Other terms in the equality just displayed are positive,
owing to the second-order condition wL + 2λ > 0.

30The curve λ = L(δ;N) must intersect the curve δ = D(λ;N) from below because, for λ = 0, the curve
λ = L(δ;N) is to the right of the curve δ = D(λ;N).
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B Motivating evidence: Price informativeness and ESG
scores

In this Appendix, we produce empirical evidence that is consistent with large ESG-conscious
investors adding noise to prices. The empirical hypothesis is developed as follows. As we argued
in Section 9.1, large asset managers around the world put increasingly more weight on firms’
ESG performance in their investment decisions. It is thus plausible that stocks with higher
ESG scores are owned proportionally more by ESG-conscious investors. As a result, these
stocks would have lower price informativeness.

To carry out the empirical test, we combine the three quarterly price informativeness mea-
sures as constructed in Sammon (2021) with the annual KLD index data as constructed in Khan,
Serafeim, and Yoon (2016). Sammon studies earnings announcements and argues that when
the share of informed traders reduces or when they gather less information, 1) the pre-earnings
turnover, 2) the pre-earnings drift, and 3) the share of volatility occuring on non-earnings-
announcement days should decline.31 The intuition is that in this case, informed traders would
trade less, hence incorporating less information in prices before the announcements. This re-
sults in lower trading volume and weaker drift before announcement and more news, thus, more
stocks returns volatility, happening on earnings-announcement day. MSCI KLD is one of the
most widely used sustainability dataset in past studies and higher KLD index is considered
as better ESG performance. We also use data from Compustat/CRSP as firm-level control
variables. After dropping observations with missing firm-level data in Compustat/CRSP, the
final sample ranges from 1996 to 2017, with 85,313 Firm-YearQuarter observations.

We find the hypothesized negative relationship between price informativeness and KLD
index in a firm-level, cross-sectional regression analysis as reported in Table 1. For each of the
three price informativeness measures, we have two main regression specifications. In the first
specification (columns (1), (3) and (5) in the table), we use Year-quarter × Size decile fixed
effects to essentially run cross-sectional regressions in a given quarter for firms in the same
decile by market capitalization. We find negative coefficients on all three measures. In the
second specification (columns (2), (4) and (6) in the table), we further add firm-level controls
to absorb variations in price informativeness driven by factors other than ESG performance.
As a result, the negative relationship becomes more economically and statistically significant.

31We use the data directly provided by the author and the measures are defined in the working paper version
of Sammon (2021) dated on November, 2021.
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Table 1

Pre-earnings turnover Pre-earnings drift Non-earnings-day volatility
(1) (2) (3) (4) (5) (6)

KLD_index -0.0267∗ -0.0406∗∗ -0.0002 -0.0005∗∗∗ -0.0036∗∗∗ -0.0035∗∗∗
(0.0152) (0.0173) (0.0002) (0.0001) (0.0009) (0.0009)

R2 0.08376 0.09652 0.07527 0.11924 0.06407 0.08435
Observations 85,313 85,313 85,313 85,313 85,313 85,313

Year-quarter × Size decile F.E. ✓ ✓ ✓ ✓ ✓ ✓
Firm-level controls ✓ ✓ ✓

Table 1: Firm-level cross-sectional regressions of Price Informativeness on ESG scores. Note:
∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01. The dependent variables are the three measures of price informativeness defined in
Sammon (2021), namely, pre-earnings turnover, pre-earnings drift, and the share of volatility occurring on non-
earnings-announcement days. The independent variable is the KLD index as constructed in Khan et al. (2016).
Firm-level controls include Size, Turnover, Analyst coverage, Advertising intensity, Institutional ownership,
R&D, and Capital expenditure. Standard errors are clustered at firm level.
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Internet Appendix of
“When Large Traders Create Noise”

IA.1 A Competitive Model with Price-Taking Large Traders

In this section we demonstrate the critical importance of large traders’ market power and
the associated strategic trading behavior in driving the main mechanism and the associated
results of the paper, namely, trading complementarity, the unconventional adverse effects of
competition on welfare and those of signal quality on informational efficiency, and fragility
induced by market power. We show that if large traders take prices as given, none of the
results continues to hold.

We first revisit the mechanism that underlies trading complementarity among investors and
market fragility, which corresponds to results stated in Lemmas 1 and 2 and Theorem 1.

Proposition IA.1. Consider the same model described in Section 3 but assume that large
traders are price takers. Fix the parameters (α, β, γ) in large traders’ demand schedules. When
large traders trade more aggressively (i.e., when β increases), informational efficiency increases
and small traders provide more liquidity (i.e., γS increases). Fix the parameters (αS, βS, γS)
in small traders’ demand schedules. When small traders provide more liquidity (i.e., when γS
increases), the market becomes more liquid. However, larger traders’ trading aggressiveness
β does not change because they take price as given. As a result, the trading complementarity
highlighted in Section 4 does not arise and the equilibrium is unique.

Proof of Proposition IA.1. The proof of the first part of the proposition (partial equilibrium
with (α, β, γ) fixed) is identical to the proof of Lemma 1. The optimal demand of large traders
is vL−p

wL
, implying that β = γ = 1/wL. Thus, the aggressiveness β is a constant, and the second

part of the proposition (partial equilibrium with (αS, βS, γS) fixed) follows. To find the overall
equilibrium, we note that (αS, βS, γS) are given by the same functions of δ ≡

√
τπ/τϵ as in

Theorem 1. For large traders, we have β = γ = 1/wL, αL = 0. The δ is the unique positive
solution to the cubic equation

τϵwL
NwS ((δ2 + 1) τϵ + τS)

=
δ
√
τϵ − ρ2τϵ√
τL

− ρ

√
τS
τL
. (IA.1)

The proposition above highlights that strategic trading behavior of large traders (i.e., ac-
counting for their price impact) is indispensable for the trading complementarity. Indeed, step
(4) in Figure 1 is absent when large traders take prices as given. Consequently, the equilibrium
is unique and the market fragility discussed in Section 7 no longer arises.

Next, we turn to the analysis of welfare and competition in Section 5. Propositions 8 and
3 show that increasing competition (N) via the breakup of large traders harms informational
efficiency and might reduce welfare. Neither changes with N when large traders are price takers.
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Proposition IA.2. When large traders take prices as given, changes with N via mergers or
splits affect neither informational efficiency nor welfare.

Proof of Proposition IA.2. Examining equation (IA.1) we see that δ does not change with
N when aggregate risk-bearing capacity N/wL of large traders is a constant (unaffected by N).
Hence, informational efficiency does not change with N . Following the steps as in Section 5 one
can show that welfare loss is given by (8) with ⟨xS⟩ = xFBS +b, where b = (v̄S−vS)/(wS+wL/N).
Once can then write welfare loss in terms of wL/N and δ, neither of which changes with N .
Since welfare in the first-best is unaffected by N , we have that the welfare does not change
with N .

When larger traders are price takers, increasing N via splitting will not change their trading
aggressiveness. Thus the amount of noise injected by them and informational efficiency remains
unchanged. So does welfare.32

Finally, in Section 6 we show that improving the quality of private information can re-
duce informational efficiency (Proposition 4). This unconventional result no longer arises, and
informational efficiency increases as in standard models when large traders are price takers.

Proposition IA.3. When large traders take prices as given, an increase in the signal precision
τϵ enhances informational efficiency IRPE.

Proof. Equation (IA.1) implies that equilibrium τπ solves the following equation:

τϵwL
NwS (τπ + τϵ + τS)

=

√
τπ(1− ρ2)
√
τL

− ρ

√
τS
τL
.

Differentiating the above equation implicitly we get that τπ in increases in τϵ, from which the
statement follows.

32Changing N via entry or exit will affect both welfare and informational efficiency because the aggregate
risk-bearing capacity of large traders as a whole changes. These effects are well understood in the literature
(Stein, 1987) and so we focus on merger/splits as the main comparative statics exercises.
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IA.2 The Limiting Case of Large Correlation between vL
and vS

In this section we investigate the case when the correlation between vL and vS is close to 1.
This case is an interesting one for the following reason. Suppose that ρ is close to 1. Then,
large traders would inject little noise in the price for small traders, weakening step (1) in
the equilibrium mechanism in Figure 1. Then, one would expect that the complementarity
highlighted in our paper would be weakened, so our mechanism would be less applicable to
settings with little room for private values (as often assumed in finance). Below we show that
the above argument is not correct. What it misses is that when ρ gets larger, small traders rely
more on prices, reinforcing step (2) of the equilibrium mechanism. Thus, the complementarity
will still be there even in the limit as ρ→ 1.

Theorem IA.1. When ρ→ 1 the equilibrium parameter δ =
√
τπ/τϵ satisfies

δ =
x0√

τε(1− ρ2)
+ x2

√
τε(1− ρ2) +O(1− ρ2).

The equilibria are characterized as follows.

1. If
√

τS
τL

N
2
> 1 there is a unique equilibrium with x0 =

√
τS and x2 =

λ∗0+wL

NτSwS

√
τL −

√
τS

2τϵ
,

where λ∗0 is a greater root of quadratic equation (IA.5). In this equilibrium, IRPE is
increasing in τϵ.

2. If
√

τS
τL

N
2
< 1:

• There exists an equilibrium with x0 = 2
√
τL
N

and x2 = N
4

(
2(2−N)wS+wL

2
√
τLwS

(
1−
√

τS
τL

N
2

) − 2(τϵ+τS)
τϵ
√
τL

)
.

In this equilibrium, IRPE is decreasing in τϵ when wS
(√

τS
τL

N
2
− N

2

)
+wL < 0. Such

equilibrium is unique if the two roots of quadratic equation (IA.5), λ±0 are such that
λ±0 < −wL/2.

• There might exist two additional equilibria with x0 =
√
τS and x2 = λ±0 +wL

NτSwS

√
τL−

√
τS

2τϵ
,

where λ±0 are two roots of (IA.5). Such equilibria exist if both roots λ±0 > −wL/2.

In all equilibria λ and IRPE are increasing in ρ.

Proof of Theorem IA.1. Denote a =
√
τε(1− ρ2) and x = δa. Write

x = x0 + x1a+ x2a
2 +O(a3). (IA.2)

Denote
λ(x) =

NwS√
τL

(x− ρ
√
τS)

(
x/a2 +

τS + τε
τε

)
− wL.
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The equilibrium equation to pin down x is

λ(λ+NwS + wL)− wS(2λ+ wL)

(
x

a

(
x

a
−
ρ
√
τS
a

)
+ 1

)
= 0 (IA.3)

Note that
ρ =

(
1− a2/τϵ

)1/2
= 1− 1

2
a2/τϵ +O(a3). (IA.4)

Plugging (IA.2) and (IA.4) into (IA.3), multiplying that equation by a4 and collecting the
zero-order terms yields the following potential solutions for x0 that might satisfy the SOC
λ > −wL/2:

x0 =
√
τS, x0 =

2
√
τL
N

.

Case 1. x0 = x10 ≡
2
√
τL
N

. It will be a solution if and only if λ(x0) > −wL/2 for sufficiently
small a. This will clearly be the case when x0−

√
τS > 0 or

√
τS
τL

N
2
< 1. (In that case, λ→ +∞

as a→ 0).

Matching first- and second-order coefficients, we find x1 = 0 and x12 = N
4

(
2(2−N)wS+wL

2
√
τLwS

(
1−
√

τS
τL

N
2

) − 2(τϵ+τS)
τϵ
√
τL

)
.

Thus, we get our first solution,

δ1 =
x10√

τε(1− ρ2)
+ x12

√
τε(1− ρ2) +O(1− ρ2) if

√
τS
τL

N

2
< 1.

Given this asymptotic, we can compute (recall δ =
√
τπ/τϵ)

dτπ
dτϵ

= 2
√
τπ
d
√
τπ

dτϵ
= 2

√
τπ

N
(
4wS

(√
τS
τL

N
2
− N

2

)
+ wL

)
8
√
τLwS

(
1−

√
τS
τL

N
2

) +O(a2)


It becomes negative infinity when wS

(√
τS
τL

N
2
− N

2

)
+ wL < 0 and ρ → 0. Thus, both τπ

and IRPE will be decreasing in τϵ for
√

τS
τL

N
2
< 1, ψ small enough and ρ sufficiently close to 1.

It also follows that λ is increasing in ρ.
Case 2. x0 = x20 ≡

√
τS.

This is a more delicate case. One can find that x1 = 0 by plugging into (IA.3) and collecting
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the terms of the same order in a. Then, the limiting λ is finite so one can write

λ(x) =

NτSwS
(√

τS
2τϵ

+ x2

)
√
τL

− wL


︸ ︷︷ ︸

≡λ0

+O
(
a1
)
.

Similarly,

x

a

(
x

a
−
ρ
√
τS
a

)
=

√
τS

(√
τS

2τϵ
+ x2

)
+O

(
a1
)

=
λ0 + wL
NwS

√
τL
τS

+O
(
a1
)
.

Plugging this into (IA.3), and matching zero-order terms we get the quadratic equation on
λ0:

λ20

(
1− 2

N

√
τL
τS

)
+ λ0

(
wL

(
1− 3

N

√
τL
τS

)
+ (N − 2)wS

)
− w2

L

N

√
τL
τS

− wLwS = 0 (IA.5)

We are looking for the solutions such that λ0 > −wL/2.

Case 2a.
√

τS
τL

N
2
> 1. Examining (IA.5) we see that the quadratic is negative at λ0 = −wL/2

and is positive for λ0 large enough. Thus, there exists unique λ0 solving (IA.5) such that
λ0 > −wL/2. Denote it λ∗0 (the greater root of (IA.5)) and note that λ∗0 does not depend on τϵ.

Denote x22 =
λ∗0+wL

NτSwS

√
τL −

√
τS

2τϵ
. We have

δ2 =
x20√

τε(1− ρ2)
+ x22

√
τε(1− ρ2) +O(1− ρ2) if

√
τS
τL

N

2
> 1.

One can show that in the case 2a τπ always increases in τϵ. Also, one can show that third-
order terms for expansion of x in a are zero, from which it follows λa→ 0 as a→ 0. Since a is
decreasing in ρ it follows that λ is increasing in ρ.

Case 2b.
√

τS
τL

N
2
< 1. In this case, depending on parameters, we might either have 0 or 2

roots of (IA.5) such that λ0 > −wL/2. (One root is not possible because (IA.5) is negative at
λ0 = −wL/2). One can compute the discriminant and the roots of (IA.5) in closed-form, which
gives necessary and sufficient conditions for zero or two such roots to exist. We also note that
wL/wS small enough is sufficient to guarantee existence of two such roots.

The theorem above demonstrates that the main consequences of complementarity are still
there in the limit of ρ→ 1: multiple equilibria are possible (up to three) and the informational
efficiency might decrease in τϵ. We also derive the comparative statics with respect to ρ, when
ρ is large: (i) informational efficiency is increasing in ρ (less noise when ρ is larger) and (ii)

5



liquidity is decreasing in ρ (less gains from trade when ρ is larger).
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IA.3 An Alternative Information Structure

In the main part of the paper we assume that small traders receive dispersed signals about their
value, sj = vS + ϵj. Here, we show that our results are unchanged if they receive dispersed
information about the fundamental v. In particular, we suppose that sj = v + ϵj, where the
assumptions about joint distribution of v and ϵj, j ∈ [0, 1] is as in the main part of the paper.
(Recall that in the main part of the paper, the signal sj = vS+ϵj bundles information about the
private value uS and the fundamental value v.) Here, we assume that small traders have some
common source of information about uS and so uS has two components, uS = unS + ukS. The
component ukS(resp., unS) is known (resp., not known) to small traders and the two components
are jointly normally distributed and independent from each other and all other random variables
in the model.33 Neither part of uS is known to large traders.

We start by revisiting the equilibrium characterization. Unlike in the main model, we denote

ρ = corr(v, vL) and τS = V ar(v)−1.

This is a convenient notation as it allows to keep the formulations of the propositions from
main part of the paper almost unchanged. We now state the formulation of the Theorem 1 for
this information structure.

Theorem 1.IA.3. There exists a sufficient static π that is informationally equivalent to the
price p, such that π = v + ζ/

√
τπ, where ζ ∼ N(0, 1) and is independent of v. There exists at

least one equilibrium. All equilibrium variables can be expressed in closed form by way of an
endogenous variable δ ≡

√
τπ/τε. In particular, price impact can be expressed as

λ(δ) =
NwS√
τL

(δ
√
τε(1− ρ2)− ρ

√
τS)

(
δ2 +

τS + τε
τε

)
− wL.

The equilibrium δ is the solution to the sixth-order polynomial equation

λ(δ)(wL +NwS + λ(δ))− wS

(
1 + δ

(
δ − ρ√

1− ρ2

√
τS
τε

))
(wL + 2λ(δ)) = 0 (IA.6)

such that λ(δ) > −wL/2.

Proof of Theorem 1.IA.3. First, note that we can always incorporate the known part of the
small traders’ private value to the v̄S. Thus, without loss of generality, we proceed to assume
that ukS = 0. The first-order conditions from can be summarized as follows:

xj =
E[vS|sj, p]− p

wS
and xi =

vL − p

wL + λ
.

The second-order condition for large traders, λ > −wL/2, must also hold. Since neither the
33E.g., small traders might have a common signal su about uS in which case ukS = E[uS |su] and unS =

uS − E[uS |su]. Note that settings where small traders know their value perfectly or do not know it at all are
special cases of the one considered here.
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price p nor the signal sj contains information about unS and we set ukS = 0, we have E[vS|sj, p] =
E[v|sj, p]. Thus, the first-order conditions would be the same as in the economy from the main
part of the paper and vS = v. The statements of the proposition then follow.

We now formulate our proposition about welfare.

Proposition 3.IA.3. Suppose that (ρ2 − 1) τϵ + ρ
√
τLτS − τS > 0, then for sufficiently small

h = wL/(NwS), there exists an equilibrium where WL increases in N . Such an equilibrium is
unique for large enough N .

Proof of Proposition 3.IA.3. First, as in the proof of Theorem 1.IA.3 we assume ukS = 0.
We will compute the expectation of WL given ukS, so such normalization is without loss of
generality. (The unconditional statements follow directly from the conditional ones.) Then,
note that RTW = (vS + unS − vL)⟨xS⟩ − wS

2
β2
Sτ

2
ϵ − wS+wL/N

2
⟨xS⟩2. Taking expectation with

respect to unS, the expression becomes identical to that in the proof of Proposition 3. The rest
of the proof then proceeds as in Proposition 3.

Next, we proceed to our result about informational efficiency.

Proposition 4.IA.3. There exist τ ε, τS, and h such that, for all τε < τ ε, τS < τS and
h ≡ wL

wS
< h: there exists a unique equilibrium in which informational efficiency IFPE decreases

as signal precision τε increases for τukS = V ar(ukS)
−1 large enough.

Proof of Proposition 4.IA.3. First, we note that in this proposition we cannot incorporate
ukS to v̄S, since an ‘econometrician’, from whose perspective the informational efficiency is
defined, does not know it. From the perspective of an ‘econometrician’ who only knows sj and
p the price is informationally equivalent to βSv + NβvL + 1

wS
ukS. After substituting vL from

Lemma 3 and undertaking some rearrangement, we obtain that the price is informationally
equivalent to π = v +

ukS
wSβS

+ (1/
√
τπ)ζ, where ζ = 1/C(vL − A− Bv) (see Lemma 3).

Next, we use the law of total variance to write

Var(v|p, sj) = Var
(
v|p, sj, uks

)
+Var

(
E[v|p, sj, uks ]|p, sj

)
.

The first can be computed invoking Lemma 4:

Var(v|p, sj) = τ−1
η +

(
kS + kLρ

√
τS/τL − kL

√
(1− ρ2) τπ/τL

)2
τS + τϵ + τπ

.

The second term is given by

Var
(
E[v|p, sj, uks ]|p, sj

)
=

(
τπ

τπ + τS + τϵ

)2 τ−1
ukS

w2
Sβ

2
S

.

Note that τukS does not affect the comparative statics of the first term. Thus, it will be a
dominant term for large τukS . The result then follows from Proposition 4.
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IA.4 A Model with Uninformed Large Traders

Here we consider a model that differs from the one in Section 3 only in that large traders do
not know their values perfectly. Instead, a large trader i is endowed with a signal si = vL + ni,
where the ni are i.i.d. as ni ∼ N(0, 1/τn) and are independent of vS and vL.

We consider symmetric linear equilibria in which a large trader i and a small trader j have
the following demand schedules

xi = α + β · si − γ · p and xj = αS + βS · sj − γS · p, (IA.7)

respectively. The coefficients (α, β, γ) and (αS, βS, γS) are identical for traders within the same
group.

Since both groups of traders learn in the extended model, we introduce two measures of
revelatory price efficiency, each one defined from the perspective of small and large traders as
follows:

IS =
Var(vS)

Var(vS|sj, p)
, IL =

Var(vL)

Var(vL|sj, p)
.

The main results of this section are that (a) the complementarity described in Section 4
continues to hold in this extended setting and (b) an increase in the precision of small traders’
signals can reduce informational efficiency both for large and small traders.

As in Section 4, we examine the mechanism’s first part by fixing the demand parameters
(α, β, γ) for large traders. Given these exogenously postulated demands for large traders, small
traders rationally maximize their utilities. We then analyze (in Lemma 1.IA.4) how a change
in β affects IS—and the amount of liquidity provided by small traders, γS—while keeping
everything else fixed.

To examine the second part of the mechanism, we fix the demand parameters (αS, βS, γS)
for small traders. Given these exogenously postulated demands for small traders, large traders
rationally maximize their utilities. We then analyze (in Lemma 2.IA.4) how a change in γS
affects liquidity (L) and how aggressively large traders trade (β) while keeping everything else
fixed. The full equilibrium is analyzed in Theorem 1.IA.4.

Lemma 1.IA.4. The equilibrium price is informationally equivalent to a sufficient statistic
π ≡ vS + (1/

√
τπ)ζu, where ζu ∼ N(0, 1) is independent of vS and where τπ is the sufficient

statistic’s precision, as follows:

τπ ≡ Var[π|vS]−1 =

((
τL

1− ρ2

(
ρ

√
τS
τL

+
βS
Nβ

)2)−1

+
Nβ2

τn

)−1

.

The revelatory price efficiency for small traders can be written as

IS =
τS + τε + τπ

τS
. (IA.8)

Small trader j’s demand is given by xj = (E[vj|sj, p]− p)/wS, and her price sensitivity can be
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written as
γS =

1

wS︸︷︷︸
expenditure effect

− 1

wS

∂E[vS|sj, p]
∂p︸ ︷︷ ︸

>0, information effect

.

Both τπ and IS are decreasing in β. The information effect, ∂E[vS |sj ,p]
∂p

, is decreasing in β,
whereas the expenditure effect, 1/wS, is independent of β; as a result, γS is increasing in β.
Therefore, if large traders trade more aggressively, then the price is less informative for small
traders and they provide more liquidity.

Proof of Lemma 1.IA.4. The price is informationally equivalent to βSvS+NβvL+
∑N

i=1 ni.
After substituting vL from Lemma 3 and then rearranging, we find that the price is informa-
tionally equivalent to π ≡ vS + (1/

√
τπ)ζu, where

τπ ≡ Var[π|vS]−1 =

((
τL

1− ρ2

(
ρ

√
τS
τL

+
βS
Nβ

)2)−1

+
Nβ2

τn

)−1

. (IA.9)

The formula for informational efficiency now follows directly from the projection theorem. We
can see from the displayed formula that τπ and hence IS decrease as β increases.

The optimal demand of a small trader j can be written as xj =
E[vs|sj ,p]−p

wS
. Then γS =

1
wS

− ∂E[vs|sj ,p]
∂p

. Now we write E[vs|sj, p] = τπ
τS+τε+τπ

π+ ...; here, as before, “...” stands for terms
that do not depend on p. One can write π = γS+Nγ

βS+Nβρ
√
τS/τL

p + ..., from which (after some
rearrangement) it follows that

γS =

1
wS

− τπ
τS+τε+τπ

Nγ

βS+Nβρ
√
τS/τL

1 + τπ
τS+τε+τπ

1

βS+Nβρ
√
τS/τL

.

It can be seen from this expression that γS decreases in β.
This lemma reveals that steps (1) and (2) of the equilibrium loop in Figure 1 continue to

hold. The intuition for the first step is similar to that given in Section 4: Since large traders
create noise in the price for small traders, it follows that large traders trade more aggressively,
and inject more noise into the price for small traders, which makes it less informative to them.
Step (2) in Figure 1 is also addressed by Lemma 1.IA.4: small traders provide more liquidity
when the price is less informative to them. The information effect is weaker the less informative
the price is, whereas the expenditure effect is unaffected by price informativeness, so when price
is less informative, small traders provide more liquidity.

Lemma 2.IA.4. Both liquidity L and aggressiveness β are increasing in γS, ceteris paribus.
Therefore, if small traders provide more liquidity then the market becomes more liquid and large
traders trade more aggressively.

Proof of Lemma 2.IA.4. Let x = βS/β and k = βS(ρ
√
τL/τS + (N − 1)/x). We can then

10



write
β =

τn
τι+τL+τn

(τι + τL + τn)(
τι

k(τι+τL+τn)
+ λ+ wL)

,

where τι is the precision of the price from the perspective of large traders; this precision is
independent of γS. Therefore β depends on γS only through λ. For the price sensitivity of large
traders’ demands, we can write

γ =
1− τι

λk(τι+τL+τn)

τι
k(τι+τL+τn)

+ λ+ wL
.

With 1/λ = (N − 1)γ + γS the displayed equality implies that

1− γSλ = (N − 1)
λ− τι

k(τι+τL+τn)

τι
k(τι+τL+τn)

+ λ+ wL
,

from which we can see that an increase in γS leads to a decrease in λ.
As small traders provide more liquidity, the overall liquidity of the market improves. This

corresponds to step (3) in Figure 1. An improvement in liquidity reduces the price impact of
large traders. Since large traders are strategic and take their own price impact into account, if
that impact is lower, then they trade more aggressively. This behavior corresponds to step (4)
in the figure. Thus the preceding two propositions confirm that complementarity is present also
in the extended model.The full equilibrium is characterized in the following theorem.

Theorem 1.IA.4. All equilibrium variables can be expressed in closed form through two en-
dogenous variables: βS/β and λ. The equilibrium is a solution to a system of two nonlinear
algebraic equations presented in the proof below.

Proof of Theorem 1.IA.4. Denote, only in this proof x = βS/β. Following the steps of
Lemmas 1.IA.4 and 2.IA.4, we can write

τπ =

((
τL

1− ρ2

(
ρ

√
τS
τL

+
x

N

)2)−1

+
Nx2β2

S

τn

)−1

and
βS =

τε
wS(τπ + τS + τε)

.

These two equalities allow one to express βS through x in closed form. The elasticity can be
written as

γS =
1

wS

(
1− τπ

τS + τε + τπ

γ + 1/λ

βS(x)(1 + (N/x)ρ
√
τS/τL)

)
,

which depends on x, λ, and γ. We now provide the following closed-form expression for γ as a
function of λ and x:

γ =
1− τι

λk(τι+τL+τn)

τι
k(τι+τL+τn)

+ λ+ wL
.

11



Then β is given by

β =
τn

τι+τL+τn

(τι + τL + τn)(
τι

k(τι+τL+τn)
+ λ+ wL)

and τι can be expressed as

τι =

(
(N − 1)

(
1

N − 1 + xρ
√
τL/τS

)2
1

τn
+
βS(x)

2(1− ρ2)

τSk2

)−1

.

Finally, the equilibrium values of x and λ solve

x =
βS
β

and
1

λ
= γS + (N − 1)γ,

respectively.
A central result in Section 6 is that price can be less informative for small traders (i.e., IRPE

can decrease) as the quality of their private information increases (i.e., as τε increases). This
outcome is possible because, with more informative signals, small traders provide more liquidity
and thus make the market more liquid for large traders, who then trade more aggressively and
thereby inject more noise into the price. Is it possible that price becomes less informative
for large traders as well? The answer is yes. The reason is that when large traders trade
more aggressively, they load more, not only on their value vL but also on the noise ni in their
signals. Since there are few large traders, that noise does not vanish. This result is illustrated
in Figure IA.1.
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Figure IA.1: Effect of precision τε on informational efficiency.

The graphs plot small investors’ informational efficiency IS (Panel (a)) and large investors’
informational efficiency IL (Panel (b)) as a function of τε. Parameter values are N = 13,
v̄L = v̄S = 0, τS = 1.5, τε = 1, τL = 4, and τn = 5.
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IA.5 A Model with Heterogeneous Private Values

In the main part of the paper we assume that all large traders have the same value vL and all
small traders the same value vS. Here, we show that our results are unchanged if large/small
traders’ (k ∈ {L, S}) private values are given by aLv + uck + uik with the common component
uck ∼ N(0, τ−1

u,k,c) and an independent idiosyncratic component uik i.i.d. uik ∼ N(0, τ−1
u,k,i). We

assume large traders know all components of their value, but not that of other traders. We also
assume that the only information small traders have about their value is given by sj = v + ϵj.

Unlike in the main model, we denote

ρ = corr

(
aSv, aLv + uL +

1

N

∑
i

uiL

)
, τL = V ar

(
aLv + uL +

1

N

∑
i

uiL

)−1

,

τu,L = V ar

(
uL +

1

N

∑
i

uiL

)−1

.

This is a convenient notation as it allows to keep the formulations of the propositions from
main part of the paper almost unchanged. We now state formulation of the Theorem 1 for this
setting.

Theorem 1.IA.5. There exists a sufficient static π, that is infomationally equivalent to the
price p, such that π = v + ζ/

√
τπ, where ζ ∼ N(0, 1) and is independent of v. There exists at
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least one equilibrium. All equilibrium variables can be expressed in closed form by way of an
endogenous variable δ ≡

√
τπ/τε. In particular, price impact can be expressed as

λ(δ) =
NwS√
τL

(δ
√
τε(1− ρ2)− ρ

√
τS)

(
δ2 +

τS + τε
τε

)
− wL.

The equilibrium δ is the solution to the sixth-order polynomial equation

λ(δ)(wL +NwS + λ(δ))− wS

(
1 + δ

(
δ − ρ√

1− ρ2

√
τS
τε

))
(wL + 2λ(δ)) = 0 (IA.10)

such that λ(δ) > −wL/2.

Proof of Theorem 1.IA.5. The first-order conditions can be summarized as follows:

xj =
E[aSv + uS|sj, p]− p

wS
+
ujS
wS

and xi =
aLv + uL + uiL − p

wL + λ
.

The second-order condition for large traders, λ > −wL/2, must also hold. Note that neither
the price, nor the signal contain information about uS, hence E[uS|sj, p] = E[uS] = 0. The
aggregate demand of small traders is

∫
xjdj =

∫ E[aSv|sj ,p]−p
wS

dj. Thus, the aggregate demand
of small traders is as in the main model with small trades value equal to aSv. Similarly,
the aggregate demand of large traders is

∑
i xi =

∑
i

aLv+uL+1/N
∑

j u
j
L−p

wL+λ
. Thus, the aggregate

demand of large traders is as in the main model where all of them have value aLv + uL +
1/N

∑
j u

j
L. The equilibrium is then pinned down by the same conditions as in the main model

with values aSv and aLv + uL + 1/N
∑

j u
j
L for small and large traders, respectively. The

proposition then follows.
Next we turn to the proposition concerning informational efficiency.

Proposition 4.IA.5. Suppose Assumption 1 holds. Suppose that 2 ≤ N < N̄ ≡ 2aS/aL and
h ≡ wL

NwS
< h̄ ≡ 2 − 2

N
− aL

aS
. For small enough τϵ, τv and τu,L there exists an equilibrium in

which IFPE and IRPE both decrease as signal precision τε increases. Such equilibrium is unique,
provided that condition (26) in the Appendix holds.

Proof of Proposition 4.IA.5. The proof is identical to that of Proposition 4 since the
equilibrium conditions and expressions for informational efficiency are identical to that in the
main model with values aSv and aLv+uL+1/N

∑
i u

i
L for small and large traders, respectively.

The model with heterogeneous private values is much less tractable when it comes to wel-
fare. We are not able to prove analytically the analog of Proposition 3 in this case. We thus
investigate the role of the two key new parameters, τu,k,S and τu,k,L numerically. Our simula-
tions show that τu,S does not affect the comparative statics welfare in (N). This is because
with a continuum of traders, uiS wash out in equilibrium and it can be shown that their con-
tribution to welfare is given by (τu,S,i)

−1/(2wS), so uiS does not interact with N . The private
values of large traders affect welfare through two novel channels. First, as N increases the
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Figure IA.2: Effect of the extent of competition on welfare.

The graphs plot aggregate welfare as functions of N when τu,S,i = 10 (Panel (a)) and
τu,S,i = 1 (Panel (b)). Other parameter values are v̄L = v̄S = 0, aS = 1, aL = 0.4
var(v)−1 = 0.358, var(ucS)−1 = 0.139, var(ucL)−1 = 18.9, τϵ = 0.1, wL = N/2, and wS = 1.
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variance of 1/N
∑

i u
i
L decreases, implying less noise in the price. Second, each additional large

trader has not only gains from trade with small traders (as in the main model) but also with
large traders (new). Both of these channels tend to contribute to welfare increasing in N . We
therefore find numerically that when τu,L,i is small enough (large enough heterogeneity in uiL),
welfare increases in N . Figure IA.2 illustrates it: panel (a) has large τu,L, and demonstrates
the unconventional result; panel (b) has small τu,L and the conventional result prevails.
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IA.6 A dynamic model

In this section we consider the following dynamic model. The trade happens at t = 0 and
t = 1/2. The period t = 0 is as in the main model: small traders with value vS trade with
large traders with value vL. We assume that large traders know both vS and vL. This implies
that large traders have no uncertainty about the residual supply, which might result in the
multiplicity of equilibria, as in Klemperer and Meyer (1989). To avoid such multiplicity we
apply the robust Nash equilibrium selection criterion of Rostek and Weretka (2015a): We focus
on large traders demands that are optimal even after adding full-support uncertain additive
noise to their residual demand. At time t = 1/2 the values vS and vL are realized. Therefore,
there is no informational friction at that time. In both periods, traders have quadratic inventory
costs wk e2k,t/2, k ∈ {L, S}, where ek,t denotes the inventory at the end of period t. We assume
that at t = 0 small traders have information about the price at time t = 1/2, sj = p∗1/2 + ϵj.
Thus, their information is short-term, rather than long-term.34

We will show that t = 0 demands of traders in the dynamic model coincide with that
in the following static model, considered in the main part of the paper. Small traders with
value v̂S = mSvS + (1 −mS)vL trade with large traders with value v̂L = mLvS + (1 −mL)vL,
where constants mS,mL ∈ (0, 1). Small traders have dispersed information about vS: sj =
vS + ϵj. Traders have quadratic inventory costs ŵk e2k/2, k ∈ {L, S}, where ek denotes the
inventory at the end of period 0. Such a model is a particular case of the model in the main
part of the paper. Therefore, the equilibrium characterization and the proposition concerning
informational efficiency follow immediately from those in that section. In the propositions that
follow we refer to the two models just described simply as dynamic and static, respectively.

We now establish our main result, the isomorphism between the demands in the static and
dynamic models.

Theorem IA.2. Let λ1/2 be the unique positive root of the quadratic equation 1
λ1/2

= 1
wS

+
N−1

wL+λ1/2
. The measures of informational efficiency and the demands of small and large traders

in the dynamic model is the same as that in the static model with v̂S = mSvS + (1 −mS)vL,
v̂L = mLvS+(1−mL)vL, ŵS = wS and ŵL = 2wL−

(wL+2λ1/2)w2
L

(wL+λ1/2)
2 > wL, where mS =

1
wS

1
wS

+ N
wL+λ1/2

and mL =
(wL+2λ1/2)wL

(wL+λ1/2)
2 mS. The equilibrium time-1/2 price is given by p∗ = v̂S.

Note that in a static model v̂S loads positively on values of traders from other group, vL,
and similarly v̂L loads positively on vS. This is because in the dynamic model, at t = 0 traders
care not only about the valuation of the asset but also about price next period, which is driven
by both vS and vL. Suppose that vS and vL are independent. Then in a static model we have
corr(vS, vL) > 0. The dynamic considerations increase the correlations of the values, reflecting
the decreased gains from trade at t = 0 (part of gains from trade will be realized at t = 1/2).
Proof of Theorem IA.2.

34Our analysis complicates significantly if small traders have information about vS or about v, as opposed to
p∗1/2, but the numerical analysis shows that the main takeaways still apply.
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We proceed backwards and start from t = 1/2.

Lemma IA.1. The time-1/2 value function of small traders is given by V j,∗
S

(
ejS,
〈
ejS
〉
,
〈
ejL
〉)

=

Ei
[
wS

2

(
yj,∗S
)
2 − wS

2

(
ejS
)
2
]
, that of a large trader is V i,∗

L

(
eiL,
〈
ejS
〉
, ⟨eiL⟩

)
=

wL+2λ1/2
2

(
yi,∗L
)
2 −

wL

2
(eiL)

2, where
〈
ejS
〉
≡
∫
ejSdj, ⟨eiL⟩ = 1

N

∑
i e
i
L, the equilibrium time-1/2 price is given by

p∗1/2 (⟨eiS⟩ , ⟨eiL⟩) =
vS
wS

+
NvL
wL+λ

−⟨eiS⟩−N⟨eiL⟩
1

wS
+ N

wL+λ1/2

and time-1/2 price impact λ1/2 is the unique positive

root of quadrtic equation 1
λ1/2

= 1
ws

+ N−1
wL+λ1/2

, and allocations are given by yj,
∗

S =
vS−wSe

j
S−p

∗
1/2

wS

and yi,
∗

L =
vL−wLe

i
L−p

∗
1/2

wL+λ1/2

Proof of Lemma IA.1. We start with the FOCs. The small trader’s problem can be
formulated as

max
y

(vS − p) y − wS
2

(
ejS + y

)
2 =⇒ (IA.11)

yj,
∗

S =
vS − wSe

j
S − p

wS
(IA.12)

Similarly, large traders solve, while accounting for their price impact (i.e., accounting for the
fact that p = const+ λ1/2y)

max
y

(vL − p) y − wL
2

(
eiL + y

)
2 =⇒

yi,
∗

L =
vL − wLe

i
L − p∗1/2

wL + λ1/2
.

The price impact satisfies the consistency condition

1

λ1/2
=

1

wS
+

N − 1

wL + λ1/2
.

The unique positive root of the above quadratic equation is the only root that SOCs hold for
large traders in equilibrium.

Substitiuting (IA.12) back to (IA.11), we get

V j,∗
S = Ei

[wS
2

(
yj,∗S
)
2 − wS

2

(
ejS
)
2
]
.

For large traders, we get

V i,∗
L =

wL + 2λ1/2
2

(
yi,∗L
)
2 − wL

2

(
eiS
)
2

We now look at the t = 0 problem.
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Lemma IA.2. The demand of large traders in the dynamic model is the same as in the
main model with value v̂L = mLvS + (1 −mL)vL, and inventory cost parameter ŵL = 2wL −
(wL+2λ1/2)w2

L

(wL+λ1/2)
2 > wL, where 0 < mL =

(wL+2λ1/2)wL

(wL+λ1/2)
2

1
wS

1
wS

+ N
wL+λ1/2

< 1 and λ1/2 is given in Lemma

IA.1.

Proof of Lemma IA.2. Large traders maximize

max
x

(vL − p) x− wL
2
x2 +

wL + 2λ1/2
2

(
yi,∗L
)
2 − wL

2

(
eiS
)
2

They do so accounting for their price impact (i.e. accounting for the fact that p = const+λ0x).
The FOC is given by

vL − p− λ0x− wLx+
(
wL + 2λ1/2

)
yi,∗L

∂yi,∗L
∂x

− wLx

∂yi,∗L
∂x

=
−wL − ∂p∗1/2/∂x

wL + λ1/2

Now note that

∂p∗1/2
∂x

=
γSλ0 − 1 + (N − 1) γLλ0

1
wS

+ N
wL+λ1/2

= 0

The last one is because 1
λ0

= γS + (N − 1) γL. The fact that ∂p∗
1/2

∂x
= 0 makes sense: The

only way a large trader can affect the price p∗1/2 is through the impact on total endowments,
⟨eiS⟩+N ⟨eiL⟩ . But by market clearing, in equilibrium, ⟨eiS⟩+N ⟨eiL⟩ = 0 (endowments are equal
to time-0 trades).

Thus we have the FOC

vL − p− (λ0 + 2wL) x−
(
wL + 2λ1/2

) vL − wLx− p∗1/2
wL + λ1/2

wL
wL + λ1/2

= 0

Rearranging we get

vL − p−

(
λ0 + 2wL −

(
wL + 2λ1/2

)
w2
L

(wL + λ1/2)2

)
x−

(
wL + 2λ1/2

) vL − p∗1/2
(wL + λ1/2)2

wL = 0

And in equilibrium ⟨eiS⟩+N ⟨eiL⟩ = 0 and so p∗1/2 =
vS
wS

+
NvL
wL+λ

1
wS

+ N
wL+λ1/2

. Thus,

vL − p∗1/2 = vL −
vS
wS

+ NvL
wL+λ

1
wS

+ N
wL+λ1/2

=

vL−vS
wS

1
wS

+ N
wL+λ1/2

.
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This FOC is the FOC of a large trader from the main model with value

v̂L = vL −
(
wL + 2λ1/2

)
wL(

wL + λ1/2
)2 1

wS

1
wS

+ N
wL+λ1/2︸ ︷︷ ︸

<1

(vL − vS)

and the inventory cost parameter

ŵL = 2wL −
(
wL + 2λ1/2

)
w2
L

(wL + λ1/2)2
> wL.

It is straightforward to verify that the second-order conditions hold for λ0 > 0, which will
be true in equilibrium.

Lemma IA.3. The demand of small traders in the dynamic model is the same as in the main
model with value v̂S = mSvS + (1−mS)vL, where 0 < mL < mS =

1
wS

1
wS

+ N
wL+λ1/2

< 1 and λ1/2 is

given in the Lemma IA.1.

Proof of Lemma IA.3. Small traders maximize

max
x

(Ej [vS]− p) x− wS
2
x2 + V j,∗

S

And the value function can be written as V j,∗
S = Ej

[
x
(
p∗1/2 − vS

)]
+ 1

2wS
Ej

[(
p∗1/2 − vS

)2]
.

The FOC is then
Ej
[
vS + (p∗1/2 − vS)

]
− p− wSx = 0.

This coincides with the FOC for a small trader from the main model with

v̂S = p∗1/2 =

vS
wS

+ NvL
wL+λ

1
wS

+ N
wL+λ1/2

.

Since we have reduced the dynamic model to a static one as in the paper, the main results
about informational efficiency and multiple equilibria follow. Intuitively, in the dynamic model,
the private values v̂S and v̂L become more correlated compared to vS and vL. Small traders now
care about vL and large traders care about vS because the price at t = 1/2 is driven by both vL
and vS. The increase in correlation between private values however does not invalidate our main
results as we show in the Internet Appendix IA.2 that even in the limiting case when ρ→ 1, our
results continue to hold. We note that the theorem above does not imply that the main welfare
result follows from the static model because the value functions in static and dynamic models
are different. In fact, they differ by a constant that depends on N . We verify numerically that
there exist parameter values such that welfare in the dynamic model can decrease in N .
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